

X/////////////////////////////////////	
V/////////////////////////////////////	/////////
X/////////////////////////////////////	
X/////////////////////////////////////	
V/////////////////////////////////////	
X/////////////////////////////////////	
V/////////////////////////////////////	/////////
X/////////////////////////////////////	
X/////////////////////////////////////	
V/////////////////////////////////////	/////////
X/////////////////////////////////////	
\ ////////////////////////////////////	/////////
X/////////////////////////////////////	
X/////////////////////////////////////	
V/////////////////////////////////////	
X/////////////////////////////////////	

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Network Coding

Exam:IN2315 / EndtermExaminer:Prof. Dr.-Ing. Georg Carle

Date: Wednesday 14th February, 2018 **Time:** 10:30 – 11:45

Working instructions

- · This exam consists of
 - 16 pages with a total of 4 problems and
 - a two-sided printed cheat sheet.

Please make sure now that you received a complete copy of the exam.

- Detaching pages from the exam is prohibited.
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- The total amount of achievable credits in this exam is 60 credits.
- Allowed resources:
 - one analog dictionary <code>English</code> \leftrightarrow native language
 - one self-written cheat sheet (A4 double-sided)
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at
----------------	----	---	---------------------

Problem 1 IEEE 802.11 wireless networks (11 credits)

In this problem we consider an ordinary IEEE 802.11-based network as depicted in Figure 1.1. The two wireless devices and the access point are operating in infrastructure mode. The access points connects the wireless network to a Ethernet-based local network. The whole network makes up a single subnet.

Figure 1.1: IEEE 802.11-based wireless network

a)* What is the difference between *collision detection* and *collision avoidance* with respect to medium access?

b)* Explain two major differences between Ethernet header and the (generic) IEEE 802.11 header.

d)* Explain how a frame from NB1 to NB2 is being transmitted.

e)* Assuming that NB1 wants to communicate with PC. State the MAC addresses of the frame

- 1. between NB1 and the AP, and
- 2. between the AP and PC.

Hint: You may simply write a node's name as its MAC address, e. g. NB1 to denote the MAC address of node NB1.

Problem 2 Finite extension fields (14 credits)

Given the finite field $\mathbb{F}_{\rho},$ we consider the finite extension field

$$F_q[x] = \left\{ \sum_{i=0}^{n-1} a_i x^i \mid a_i \in \mathbb{F}_p \right\}.$$
(1)

a)* State the conditions on p, q, and n such that a finite extension field $F_q[x]$ exists.

b)* Find a generator of \mathbb{F}_5 and give a proof for your choice.

c)* List all elements of $F_q[x]$.

d)* Explain the purpose of a *reduction polynomial*.

e)* State the conditions a reduction polynomial has to fullfill.

Problem 3 Reformulating optimization problems (8 credits)

We consider the max-flow problem on a hypergraph G = (V, H) in the lossy hyperarc model as stated in (2). As introduced in class and tutorials, **x** denotes the flow vector, **M** the incidence matrix describing the induced graph, **d** the demand vector, **N** the hyperarc-arc incidence matrix, **y** the broadcast capacity vector, and \mathcal{Y} the broadcast capacity region.

max
$$r$$
 s.t. $x \ge 0$
 $Mx = rd$
 $Nx \le y$
 $y \in \mathcal{Y}$ (2)

We want to reformulate this optimization problem to a form suitable for Matlab:

$$\min \boldsymbol{f}^{\mathsf{T}}\boldsymbol{\xi} \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{\xi} \leq \boldsymbol{b}$$
$$\boldsymbol{A}^{'}\boldsymbol{\xi} = \boldsymbol{b}^{'}$$
$$\boldsymbol{c} \leq \boldsymbol{\xi} \leq \boldsymbol{c}^{'} \tag{3}$$

The \in (element of) relation cannot directly be represented by the canonical form given in (3). We therefore introduce the vector τ of time shares as well as the constraints $\mathbf{1}^T \tau \leq \mathbf{1}$ and $\tau \geq \mathbf{0}$, which are implied by the broadcast capacity region \mathcal{Y} .

a)* Find a matrix $\mathbf{Y} \in \mathbb{R}^{|H| \times |V|}$ such that $\mathbf{y} \leq \mathbf{Y} \boldsymbol{\tau}$ becomes an equivalent constraint to $\mathbf{y} \in \mathcal{Y}$. **Hint:** Elements Y_{jv} of \mathbf{Y} represent probabilities.

For the reformulation we collect all optimization variables into a single vector, which is defined as $\xi = |\tau|$

b)* Rewrite the equality constraint Mx = rd to the form $[...]\xi = 0$.

e) Combine the results from Subproblems b) – d) to the canonical flow problem as given in (3).

Problem 4 Network coding in lossy wireless packet networks (27 credits)

We consider the network represented as induced graph G = (N, A) as defined by its incidence matrix

$$\boldsymbol{M} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}.$$
 (4)

We assume that packet losses, i. e., erasure events, are indepedently and identically distributed with expectation ε_k for all $k \in A$. Assume that all arcs $k \in A$ have unit capacity. Resource shares are denoted by $0 \le \tau_i \le 1$ for all $i \in N$. We further assume orthogonal medium access, i. e., nodes do not transmit concurrently.

a) Draw the induced graph G = (N, A) and assign indices $k \in A$ to all arcs in lexicographic order. **Hint:** An additional preprint can be found in Figure 4.1.

- b)* List all hyperarcs $(a, B) \in \mathcal{H}$ in lexicographic ascending order and assign numbers $j \equiv (a, B)$ in Table 4.1.
- c)* List the set of induced arcs A_j for all $j \in H$ in Table 4.1.
- d)* Determine the network's hyperarc capacity region (Table 4.1).
- e) Determine the network's broadcast capacity region (Table 4.1).

We now consider a unicast session between nodes 1 and 4.

f)* List all s - t cuts.

g) Determine the value of each s - t cut.

$(a,B)\in\mathcal{H}$	<i>j</i> ≡ (<i>a</i> , <i>B</i>)	Aj	Zj	y _j

Table 4.1: Fill in values from different subproblems. (An additional preprint can be found in Table 4.2)

For some specific ε_k , the cut capacities become

$$v(S_1) = \frac{3}{4}\tau_1, \ v(S_2) = \frac{1}{2}\tau_1 + \frac{3}{4}\tau_2, \ v(S_3) = \frac{1}{2}\tau_1 + \frac{7}{8}\tau_3, \text{ and } v(S_4) = \frac{1}{2}\tau_2 + \frac{7}{8}\tau_3.$$

h)* What is the effect on $v(S_3)$ and $v(S_4)$ if τ_1 and τ_2 are being increased?

0	i)* Which condition must hold for τ_i with $i \in N$?
4	
I	

j)* Assuming that $v(S_1) = v(S_2)$ must hold for an optimal solution, determine τ_1 , τ_2 , and τ_3 .

The correct solution of the previous subroblem is $\tau_1 = 1/2$, $\tau_2 = 1/6$, and $\tau_3 = 1/3$. (Don't even think about using these results to find the correct solution.)

k)* Show that this solution is indeed optimal.

$(a,B)\in\mathcal{H}$	<i>j</i> ≡ (<i>a</i> , <i>B</i>)	A _j	Zj	y _j

Table 4.2: Additional preprint for Table 4.1

Figure 4.1: Additional preprint for Problem 4 a)

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

