Network Coding

Exam: IN2315 / Endterm Date: Wednesday 14 ${ }^{\text {th }}$ February, 2018
Examiner: Prof. Dr.-Ing. Georg Carle
Time: 10:30-11:45

$\begin{array}{llll}\text { P1 } & \text { P2 } & \text { P3 } & \text { P4 }\end{array}$

Working instructions

- This exam consists of
- 16 pages with a total of 4 problems and
- a two-sided printed cheat sheet.

Please make sure now that you received a complete copy of the exam.

- Detaching pages from the exam is prohibited.
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- The total amount of achievable credits in this exam is 60 credits.
- Allowed resources:
- one analog dictionary English \leftrightarrow native language
- one self-written cheat sheet (A4 double-sided)
- Physically turn off all electronic devices, put them into your bag and close the bag.
\qquad / Early submission at \qquad

Problem 1 IEEE 802.11 wireless networks (11 credits)

In this problem we consider an ordinary IEEE 802.11-based network as depicted in Figure 1.1. The two wireless devices and the access point are operating in infrastructure mode. The access points connects the wireless network to a Ethernet-based local network. The whole network makes up a single subnet.

Figure 1.1: IEEE 802.11-based wireless network
a)* What is the difference between collision detection and collision avoidance with respect to medium access?
b)* Explain two major differences between Ethernet header and the (generic) IEEE 802.11 header.
c)* Name the three major frame types used by IEEE 802.11 and give one example for each type.
d)* Explain how a frame from NB1 to NB2 is being transmitted.
e)* Assuming that NB1 wants to communicate with PC. State the MAC addresses of the frame

1. between NB1 and the AP, and
2. between the AP and PC.

Hint: You may simply write a node's name as its MAC address, e. g. NB1 to denote the MAC address of node NB1.

Problem 2 Finite extension fields (14 credits)

Given the finite field \mathbb{F}_{p}, we consider the finite extension field

$$
\begin{equation*}
F_{q}[x]=\left\{\sum_{i=0}^{n-1} a_{i} x^{i} \mid a_{i} \in \mathbb{F}_{p}\right\} . \tag{1}
\end{equation*}
$$

a) ${ }^{*}$ State the conditions on p, q, and n such that a finite extension field $F_{q}[x]$ exists.

We now consider the specific extension field $F_{q}[x]$ resulting from $p=5$ and $n=2$.
b)* Find a generator of \mathbb{F}_{5} and give a proof for your choice.

c)* List all elements of $F_{q}[x]$.

d)* Explain the purpose of a reduction polynomial.

e)* State the conditions a reduction polynomial has to fullfill.

Problem 3 Reformulating optimization problems (8 credits)

We consider the max-flow problem on a hypergraph $G=(V, H)$ in the lossy hyperarc model as stated in (2). As introduced in class and tutorials, \boldsymbol{x} denotes the flow vector, \boldsymbol{M} the incidence matrix describing the induced graph, \boldsymbol{d} the demand vector, \boldsymbol{N} the hyperarc-arc incidence matrix, \boldsymbol{y} the broadcast capacity vector, and \mathcal{Y} the broadcast capacity region.

$$
\begin{align*}
\max r \text { s.t. } \quad \boldsymbol{x} & \geq \mathbf{0} \\
\boldsymbol{M} \boldsymbol{x} & =r \boldsymbol{d} \\
\mathbf{N} \boldsymbol{x} & \leq \boldsymbol{y} \\
\boldsymbol{y} & \in \mathcal{Y} \tag{2}
\end{align*}
$$

We want to reformulate this optimization problem to a form suitable for Matlab:

$$
\begin{align*}
\min \boldsymbol{f}^{\top} \boldsymbol{\xi} \quad \text { s.t. } \quad \boldsymbol{A} \boldsymbol{\xi} & \leq \boldsymbol{b} \\
\boldsymbol{A}^{\prime} \boldsymbol{\xi} & =\boldsymbol{b}^{\prime} \\
\boldsymbol{c} & \leq \boldsymbol{\xi} \leq \boldsymbol{c}^{\prime} \tag{3}
\end{align*}
$$

The \in (element of) relation cannot directly be represented by the canonical form given in (3). We therefore introduce the vector τ of time shares as well as the constraints $\mathbf{1}^{\top} \boldsymbol{\tau} \leq 1$ and $\tau \geq 0$, which are implied by the broadcast capacity region \mathcal{Y}.
a)* Find a matrix $\boldsymbol{Y} \in \mathbb{R}^{|\boldsymbol{H}| \times|V|}$ such that $\boldsymbol{y} \leq \boldsymbol{Y} \boldsymbol{\tau}$ becomes an equivalent constraint to $\boldsymbol{y} \in \mathcal{Y}$.

Hint: Elements $Y_{j v}$ of \boldsymbol{Y} represent probabilities.

For the reformulation we collect all optimization variables into a single vector, which is defined as $\boldsymbol{\xi}=\left[\begin{array}{c}\boldsymbol{x} \\ \boldsymbol{\tau} \\ r\end{array}\right]$.
b)* Rewrite the equality constraint $\boldsymbol{M} \boldsymbol{x}=r \boldsymbol{d}$ to the form $[\ldots] \boldsymbol{\xi}=\mathbf{0}$.
d) ${ }^{*}$ Rewrite the inequality constraint $\mathbf{1}^{\top} \boldsymbol{\tau} \leq 1$ to the form $[\ldots] \xi \leq 1$.

e) Combine the results from Subproblems b) - d) to the canonical flow problem as given in (3).

$$
\begin{array}{rll}
\min []^{\top} \xi & \text { s.t. } & {[\quad \xi \leq[]} \\
& & {[\quad] \boldsymbol{\xi}=\mathbf{0}} \\
& & \\
& &
\end{array}
$$

Problem 4 Network coding in lossy wireless packet networks (27 credits)

We consider the network represented as induced graph $G=(N, A)$ as defined by its incidence matrix

$$
\boldsymbol{M}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \tag{4}\\
-1 & 0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & -1
\end{array}\right]
$$

We assume that packet losses, i. e., erasure events, are indepedently and identically distributed with expectation ε_{k} for all $k \in A$. Assume that all arcs $k \in A$ have unit capacity. Resource shares are denoted by $0 \leq \tau_{i} \leq 1$ for all $i \in N$. We further assume orthogonal medium access, i.e., nodes do not transmit concurrently.
a) Draw the induced graph $G=(N, \mathcal{A})$ and assign indices $k \in A$ to all arcs in lexicographic order.

Hint: An additional preprint can be found in Figure 4.1.

b)* List all hyperarcs $(a, B) \in \mathcal{H}$ in lexicographic ascending order and assign numbers $j \equiv(a, B)$ in Table 4.1.
c)* List the set of induced $\operatorname{arcs} A_{j}$ for all $j \in H$ in Table 4.1.
d)* Determine the network's hyperarc capacity region (Table 4.1).
e) Determine the network's broadcast capacity region (Table 4.1).

We now consider a unicast session between nodes 1 and 4 .
f)* List all $s-t$ cuts.
g) Determine the value of each $s-t$ cut.

$(a, B) \in \mathcal{H}$	$j \equiv(a, B)$	A_{j}	z_{j}	y_{j}

Table 4.1: Fill in values from different subproblems. (An additional preprint can be found in Table 4.2)

For some specific ε_{k}, the cut capacities become

$$
v\left(S_{1}\right)=\frac{3}{4} \tau_{1}, v\left(S_{2}\right)=\frac{1}{2} \tau_{1}+\frac{3}{4} \tau_{2}, v\left(S_{3}\right)=\frac{1}{2} \tau_{1}+\frac{7}{8} \tau_{3}, \text { and } v\left(S_{4}\right)=\frac{1}{2} \tau_{2}+\frac{7}{8} \tau_{3} .
$$

h)* What is the effect on $v\left(S_{3}\right)$ and $v\left(S_{4}\right)$ if τ_{1} and τ_{2} are being increased?
i)* Which condition must hold for τ_{i} with $i \in N$?
j) ${ }^{*}$ Assuming that $v\left(S_{1}\right)=v\left(S_{2}\right)$ must hold for an optimal solution, determine τ_{1}, τ_{2}, and τ_{3}.

The correct solution of the previous subroblem is $\tau_{1}=1 / 2, \tau_{2}=1 / 6$, and $\tau_{3}=1 / 3$. (Don't even think about using these results to find the correct solution.)
k) ${ }^{*}$ Show that this solution is indeed optimal.

$(a, B) \in \mathcal{H}$	$j \equiv(a, B)$	A_{j}	z_{j}	y_{j}

Table 4.2: Additional preprint for Table 4.1
(2)
(4)
(1)

Figure 4.1: Additional preprint for Problem 4 a)

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

	,	-	,	,	-	,	,		,	-	-	-	-	-	,	-	T					
-																						
-																						
-																						
-																						
-																						
-																						
-																						
-																						
-																						
-																						
-																						
-																						
-																						
\square																						
-																						

