

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number. This number is printed both next to the code and to the signature field in the attendance
- Esolution Place student sticker here

check list.

Network Coding

Exam: IN2315 / Endterm Examiner: Prof. Dr.-Ing. Georg Carle

Tuesday 18th February, 2020 Date: Time: 13:30 - 15:00

Working instructions

- This exam consists of 12 pages with a total of 5 problems. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources:
 - one cheatsheet (A4)
 - one non-programmable pocket calculator
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- · Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

/ Early submission at

Problem 1 Network flow problem (22 credits)

We consider the four-node wireless network represented as induced graph G = (N, A) in Figure 1.1.

Figure 1.1: four-node network

We assume that packet losses, i.e., erasure events, are indepedently and identically distributed with expectation ϵ_k for all $k \in A$. Assume that all arcs $k \in A$ have unit capacity. Resource shares are denoted by $0 \le \tau_i \le 1$ for all $i \in N$. We further assume orthogonal medium access, i.e., nodes do not transmit concurrently. All nodes are in range of each other, i.e., a node senses ongoing transmissions of any other node although those transmissions may not be successfully overheard.

a)* Enumerate the arcs in Figure 1.1 in lexicographic order as known from the lecture.

2

- c)* List all hyperarcs $(a, B) \in \mathcal{H}$ in lexicographic ascending order and assign numbers $j \equiv (a, B)$ in Table 1.1.
- d)* List the set of induced arcs A_j for all $j \in H$ in Table 1.1.
- e)* Determine the network's hyperarc capacity region (Table 1.1).
- f) Determine the network's broadcast capacity region (Table 1.1). We now consider a unicast session between nodes s = 1 and t = 4.

g)* Enumerate all s - t cuts S and their respective capacities $v(S_a)$.

cut	capacity
$S_1 = \{1\}$	$v(S_1) = \tau_1(1 - \epsilon_1)$
$S_2 = \{1, 2\}$	$v(S_2) = \tau_2(1 - \epsilon_3)$
$S_3 = \{1, 3\}$	$v(S_3) = \tau_1(1-\epsilon_1) + \tau_3(1-\epsilon_5)$
$S_4 = \{1, 2, 3\}$	$v(S_4) = \tau_3(1 - \epsilon_5)$

$(a,B)\in \mathcal{H}$	j ≡ (a, B)	A _j	Zj	Уј
(1, {2})	1	{(1,2)}	$ au_1(1-\epsilon_1)$	$ au_1(1-\epsilon_1)$
(2, {1})	2	{(2, 1)}	$ au_2(1-\epsilon_2)\epsilon_3$	$ au_2(1-\epsilon_2)$
(2, {3})	3	{(2,3)}	$ au_2(1-\epsilon_3)\epsilon_2$	$ au_2(1-\epsilon_3)$
(2, {1,3})	4	{(2, 1), (2, 3)}	$\tau_2(1-\epsilon_2)(1-\epsilon_3)$	$ au_2(1-\epsilon_2\epsilon_3)$
(3, {2})	5	{(3, 2)}	$ au_3(1-\epsilon_4)\epsilon_5$	$ au_3(1-\epsilon_4)$
(3, {4})	6	{(3, 4)}	$ au_3(1-\epsilon_5)\epsilon_4$	$ au_3(1-\epsilon_5)$
(3, {2, 4})	7	{(3, 2), (3, 4)}	$ au_3(1-\epsilon_4)(1-\epsilon_5)$	$ au_3(1-\epsilon_4\epsilon_5)$
(4, {3})	8	{(4, 3)}	$ au_4(1-\epsilon_6)$	$ au_4(1-\epsilon_6)$

Table 1.1: Fill in values from different subproblems. (An additional pre-print can be found on Page 12)

0		
1		

ϵ_1	<	1
ϵ_3	<	1
ϵ_5	<	1

0	
1	

i)* Express the minimum number of packets to be transmitted by each node on average to transmit N packets.

j) Express the resource shares considering all nodes in range.

$\tau_1 = \tau_2 = \tau_3 =$	$ \frac{n_1}{n_1 + n_2 + n_3} \\ \frac{n_2}{n_1 + n_2 + n_3} \\ \frac{n_3}{n_3} \\ \frac{n_1 + n_2 + n_3}{n_3} $
$\tau_3 =$	$\frac{n_3}{n_1 + n_2 + n_3}$

73 **1**3

k) Express the resource shares considering nodes 1 and 3 are not in range of each other, i. e., assuming concurrent transmission of both nodes is possible.

Problem 2 Finite fields and finite extension fields (12 credits)

Given a finite field (Galois field) $\mathbb{F}_p \subset \mathbb{N}_0$ as introduced in the lecture, we seek to define a set of polynomials $F_q[x]$ such that $F_q[x]$ becomes a finite extension field over \mathbb{F}_p .

a)* State the condition on $p \in \mathbb{N}$ as well as the finite operators $< +, \cdot >$ such that \mathbb{F}_p is a finite field. p must be primeand the binary operations $+, \cdot$ must be taken modulo p. b)* For which q is an extension field guaranteed to exist? For all $q = p^n$ with $n \in \mathbb{N}$. c) State the set of elements $F_q[x]$ of an extension field over \mathbb{F}_p . $F_q[x] = \left\{ \sum_{i=0}^{n-1} a_i x^i \mid a_i \in \mathbb{F}_p \right\}.$ d) Define the binary operators $< +, \cdot >$ such that $F_q[x]$ becomes an extension field. Note: Take care to fully define all variables you use in your definition! For any $a, b \in F_{a}[x]$ must hold ... $a + b := \sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} (a_i + b_i \mod p) x^i$ $\mathbf{a} \cdot \mathbf{b} := \left(\sum_{i=0}^{n-1} a_i x^i \cdot \sum_{i=0}^{n-1} b_i x^i\right) \mod r(x) \text{ where } r(x) \notin F_q[x] \text{ is an irreducible polynomial of degree } n$ There are various different implementations for multiplication over binary extension fields. Common approaches are *full table lookups* and *log tables*.

0	
1	

e)* Briefly explain how *full table lookups* work.

Full table lookups: All multiplication results are stored verbose in a table.

0

f)* Briefly explain how *log table lookups* work.

Log table lookups: $\log(a \cdot b) = \log(a) + \log(b) \Rightarrow a \cdot b = \exp(\log(a \cdot b)) = \exp(\log(a) + \log(b))$, where log and exp denote the discrete logarithm and its inverse operation, respectively.

0 1 2

g) Argue for which binary extension fields the algorithm of Subproblems e) and f) are best suited.

For fields such as $F_4[x]$ or $F_{16}[x]$, the penalty of having two memory lookups per multiplication is too much which is why we won't use the log table approach here.

Multiplication tables for larger fields such as $F_{256}[x]$ and above may be too large to fit into caches, which is why the penalty of memory consumption outweighs the overhead of an additional memory lookup.

Problem 3 Link quality estimations (12 credits)

A receiver receives eight packets with the following sequence numbers:

$s_1 = 0$	$s_2 = 22$	$s_3 = 68$	$S_4 = 98$
<i>s</i> ₅ = 102	<i>s</i> ₆ = 126	<i>s</i> ₇ = 152	<i>s</i> ₈ = 201.

a)* Calculate the number of accumulated received (p_k), accumulated lost (q_k), and lost-since-the-last-reception packets (z_k).

b) Calculate and update *EWMA* link quality estimation after every reception for given α = 0.97 and initial estimation *EWMA*[0] = 1.0.

c)* Determine Δt to be able to estimate 1% of link quality, in packet rate of one packet per second.

100	s															

d) Calculate and update *WM-EWMA* link quality estimation after every reception for given α = 0.97, initial estimation *WM-EWMA*[0] = 1.0, and for the previously calculated Δt .

Problem 4 ETX and EOTX metric (9 credits)

We consider the network depicted in Figure 4.1 that consists of four nodes $N = \{1, 2, 3, 4\}$ ordered according to their EOTX distance $d_{ij} \forall i, j \in N$ from left to right in ascending order. The erasure probabilities between nodes are considered independentely and identically desitrbuted with expectation $0 < \epsilon_{ij} < 1 \forall i, j \in N$.

Figure 4.1: Four-node network. We consider all possible hyperarcs being present.

The EOTX distance d_{ij} between nodes $i, j \in N$ is known from the lecture to be

$$d_{ij} = \underbrace{\frac{1}{1 - \prod_{k < i} \epsilon_{ik}}}_{a)} + \underbrace{\sum_{k < i} d_{kj}(1 - \epsilon_{ik}) \prod_{l < k} \epsilon_{il}}_{b)}.$$

a)* Explain in your own words the meaning the of the first summand in (1).

Number of transmissions made by i to ensure that at least one node closer to j than i itself receives it.

b)* Explain in your own words the meaning the of the second summand in (1).

Number of transmissions made by a downstream node k privded that

- k overheard the transmission by k and
- no node closer to *j* than *k* also received that transmission.

(1)

c)* D	erive	e d ₁	2.																
								d	12 =		1								
								d	12	1.	$-\epsilon_1$	2							

d) Derive d₁₃.

e) Derive d_{14} . $d_{14} = \begin{vmatrix} 1 & \epsilon_{12} \epsilon_{13} \epsilon_{14} \\ \cdot & \cdot \end{vmatrix}$ $\frac{1}{\epsilon_{13}} + d_{24}(1 - \epsilon_{12})\epsilon_{13}\epsilon_{14} + d_{34}(1 - \epsilon_{13})\epsilon_{14}$ $\frac{1}{1-\epsilon_{23}\epsilon_{24}}$ $\frac{1}{24} + d_{34}(1 - \epsilon_{23})\epsilon_{24}$ *d*₂₄ = 1 $d_{34} = 1 - \epsilon_{34}$

Problem 5 Quiz (5 credits)

Each of the following subproblems can be solved independently of each other.

a)* Explain the difference between network coding and forward error correction.

With FEC coding/decoding is done at source/destination (or hop-to-hop). With network coding, intermediate nodes recode without necessarily decoding.

b)* Give an example of bidirectional network coding.

A wireless network with with at least one relay node between source and destination that combined packets from both flows (directions).

c)* In multicast networks, state the reasons for maximum flow increase through store-forward, tree-based forwarding and network coding approaches both formally (in terms of constraints) and practically (in terms of actions in the nodes).

store-forward vs tree-based forwarding

formal: by relaxing flow conservation constraint.

practical: by allowing intermediate nodes duplicate packets.

tree-based forwarding vs network coding

formal: by relaxing joint capacity constraint.

practical: by allowing intermediate nodes encode packets.

d)* How are control frames prioritized over data frames when using the distributed coordination function (DCF) in IEEE 802.11?

Control frames are sent after SIFS, which is shorter than DIFS.

		0
1		
		1

$(a,B)\in\mathcal{H}$	j ≡ (a, B)	Aj	Zj	Y j
(1, {2})	1	{(1, 2)}	$ au_1(1-\epsilon_1)$	$ au_1(1-\epsilon_1)$
(2, {1})	2	{(2, 1)}	$ au_2(1-\epsilon_2)\epsilon_3$	$ au_2(1-\epsilon_2)$
(2, {3})	3	{(2, 3)}	$ au_2(1-\epsilon_3)\epsilon_2$	$ au_2(1-\epsilon_3)$
(2, {1,3})	4	{(2, 1), (2, 3)}	$\tau_2(1-\epsilon_2)(1-\epsilon_3)$	$ au_2(1-\epsilon_2\epsilon_3)$
(3, {2})	5	{(3, 2)}	$ au_3(1-\epsilon_4)\epsilon_5$	$ au_3(1-\epsilon_4)$
(3, {4})	6	{(3, 4)}	$ au_3(1-\epsilon_5)\epsilon_4$	$ au_3(1-\epsilon_5)$
(3, {2, 4})	7	{(3, 2), (3, 4)}	$ au_3(1-\epsilon_4)(1-\epsilon_5)$	$ au_3(1-\epsilon_4\epsilon_5)$
(4, {3})	8	{(4, 3)}	$ au_4(1-\epsilon_6)$	$ au_4(1-\epsilon_6)$

Table 5.1: Additional pre-print for Problem 1