Esolution

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam
- This code contains a unique number that associates this exam with your registration number
- This number is printed both next to the code and to the signature field in the attendance check list

Network Coding

Exam: IN2315 / Endterm
Examiner: Prof. Dr.-Ing. Georg Carle

Date: Tuesday $18^{\text {th }}$ February, 2020
Time: 13:30-15:00

Working instructions

- This exam consists of $\mathbf{1 2}$ pages with a total of $\mathbf{5}$ problems. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources:
- one cheatsheet (A4)
- one non-programmable pocket calculator
- one analog dictionary English \leftrightarrow native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.
\qquad

Problem 1 Network flow problem (22 credits)

We consider the four-node wireless network represented as induced graph $G=(N, A)$ in Figure 1.1.

Figure 1.1: four-node network
We assume that packet losses, i.e., erasure events, are indepedently and identically distributed with expectation ϵ_{k} for all $k \in A$. Assume that all arcs $k \in A$ have unit capacity. Resource shares are denoted by $0 \leq \tau_{i} \leq 1$ for all $i \in N$. We further assume orthogonal medium access, i.e., nodes do not transmit concurrently. All nodes are in range of each other, i. e., a node senses ongoing transmissions of any other node although those transmissions may not be successfully overheard.
a)* Enumerate the arcs in Figure 1.1 in lexicographic order as known from the lecture.
b)* Determine the incidence matrix.

c)* List all hyperarcs $(a, B) \in \mathcal{H}$ in lexicographic ascending order and assign numbers $j \equiv(a, B)$ in Table 1.1.

d)* List the set of induced $\operatorname{arcs} A_{j}$ for all $j \in H$ in Table 1.1.
e)* Determine the network's hyperarc capacity region (Table 1.1).
f) Determine the network's broadcast capacity region (Table 1.1).

We now consider a unicast session between nodes $s=1$ and $t=4$.

$\mathrm{g})^{*}$ Enumerate all $s-t$ cuts S and their respective capacities $v\left(S_{a}\right)$.

cut	capacity
$S_{1}=\{1\}$	$v\left(S_{1}\right)=\tau_{1}\left(1-\epsilon_{1}\right)$
$S_{2}=\{1,2\}$	$v\left(S_{2}\right)=\tau_{2}\left(1-\epsilon_{3}\right)$
$S_{3}=\{1,3\}$	$v\left(S_{3}\right)=\tau_{1}\left(1-\epsilon_{1}\right)+\tau_{3}\left(1-\epsilon_{5}\right)$
$S_{4}=\{1,2,3\}$	$v\left(S_{4}\right)=\tau_{3}\left(1-\epsilon_{5}\right)$

Table 1.1: Fill in values from different subproblems. (An additional pre-print can be found on Page 12)
h)* State the conditions on the loss probabilities ϵ_{k} such that communication from s to t is possible.

$$
\begin{aligned}
& \epsilon_{1}<1 \\
& \epsilon_{3}<1 \\
& \epsilon_{5}<1
\end{aligned}
$$

i)* Express the minimum number of packets to be transmitted by each node on average to transmit N packets.

$$
\begin{aligned}
& n_{1}=\frac{N}{1-\epsilon_{1}} \\
& n_{2}=\frac{N}{1-\epsilon_{3}} \\
& n_{3}=\frac{N}{1-\epsilon_{5}}
\end{aligned}
$$

j) Express the resource shares considering all nodes in range.

$$
\begin{aligned}
& \tau_{1}=\frac{n_{1}}{n_{1}+n_{2}+n_{3}} \\
& \tau_{2}=\frac{n_{2}}{n_{1}+n_{2}+n_{3}} \\
& \tau_{3}=\frac{n_{3}}{n_{1}+n_{2}+n_{3}}
\end{aligned}
$$

k) Express the resource shares considering nodes 1 and 3 are not in range of each other, i.e., assuming concurrent transmission of both nodes is possible.

$$
\begin{aligned}
& \tau_{1}=\frac{n_{1}}{n_{1}+n_{2}} \\
& \tau_{2}=\min \left\{\frac{n_{2}}{n_{1}+n_{2}}, \frac{n_{2}}{n_{2}+n_{3}}\right\} \\
& \tau_{3}=\frac{n_{3}+n_{3}}{n_{2}+n_{3}}
\end{aligned}
$$

Problem 2 Finite fields and finite extension fields (12 credits)

Given a finite field (Galois field) $\mathbb{F}_{p} \subset \mathbb{N}_{0}$ as introduced in the lecture, we seek to define a set of polynomials $F_{q}[x]$ such that $F_{q}[x]$ becomes a finite extension field over \mathbb{F}_{p}.
a) ${ }^{*}$ State the condition on $p \in \mathbb{N}$ as well as the finite operators $<+, \cdot>$ such that \mathbb{F}_{p} is a finite field.
p must be primeand the binary operations,$+ \cdot$ must be taken modulo p.
b)* For which q is an extension field guaranteed to exist?

For all $q=p^{n}$ with $n \in \mathbb{N}$.
c) State the set of elements $F_{q}[x]$ of an extension field over \mathbb{F}_{p}.

$$
F_{q}[x]=\left\{\sum_{i=0}^{n-1} a_{i} x^{i} \mid a_{i} \in \mathbb{F}_{p}\right\} .
$$

d) Define the binary operators $<+, \cdot>$ such that $F_{q}[x]$ becomes an extension field.

Note: Take care to fully define all variables you use in your definition!

For any $a, b \in F_{q}[x]$ must hold...
$a+b:=\sum_{i=0}^{n-1} a_{i} x^{i}+\sum_{i=0}^{n-1} b_{i} x^{i}=\sum_{i=0}^{n-1}\left(a_{i}+b_{i} \bmod p\right) x^{i}$
$a \cdot b:=\left(\sum_{i=0}^{n-1} a_{i} x^{i} \cdot \sum_{i=0}^{n-1} b_{i} x^{i}\right) \quad \bmod r(x)$ where $r(x) \notin F_{q}[x]$ is an irreducible polynomial of degree n

There are various different implementations for multiplication over binary extension fields. Common approaches are full table lookups and log tables.
e)* Briefly explain how full table lookups work.

Full table lookups: All multiplication results are stored verbose in a table.

f)* Briefly explain how log table lookups work.
\log table lookups: $\log (a \cdot b)=\log (a)+\log (b) \Rightarrow a \cdot b=\exp (\log (a \cdot b))=\exp (\log (a)+\log (b))$, where \log and exp denote the discrete logarithm and its inverse operation, respectively.

g) Argue for which binary extension fields the algorithm of Subproblems e) and f) are best suited.

For fields such as $F_{4}[x]$ or $F_{16}[x]$, the penalty of having two memory lookups per multiplication is too much which is why we won't use the log table approach here.

Multiplication tables for larger fields such as $F_{256}[x]$ and above may be too large to fit into caches, which is why the penalty of memory consumption outweighs the overhead of an additional memory lookup.

Problem 3 Link quality estimations (12 credits)

A receiver receives eight packets with the following sequence numbers:
$s_{1}=0$
$s_{5}=102$
$S_{2}=22$
$s_{6}=126$
$s_{3}=68$
$s_{7}=152$
$s_{4}=98$
$s_{8}=201$.
a)* Calculate the number of accumulated received $\left(p_{k}\right)$, accumulated lost $\left(q_{k}\right)$, and lost-since-the-lastreception packets $\left(z_{k}\right)$.
$p_{1}=1$
$p_{2}=2$
$p_{3}=3$
$p_{4}=4$
$p_{5}=5$
$p_{6}=6$
$p_{7}=7$
$p_{8}=8$
$q_{1}=0$
$q_{2}=21$
$q_{3}=66$
$q_{4}=95$
$q_{5}=98$
$q_{6}=121$
$q_{7}=146$
$q_{8}=194$
$z_{1}=0$
$z_{2}=21$
$z_{3}=45$
$z_{4}=29$
$z_{5}=3$
$z_{6}=23$
$z_{7}=25$
$z_{8}=48$
b) Calculate and update EWMA link quality estimation after every reception for given $\alpha=0.97$ and initial estimation $E W M A[0]=1.0$.

														-										
			EWM	MA[1]		EWM	MA [0]a	$x^{2_{1}}+$	(1-	$-\alpha)=$	1.0			EWM	MA[2]] $=$	EWN	MA[1] α^{2}	+ (1-	- $)$		0.54		
			EWM	MA[3]		EWM	MA[2]a	${ }^{23}+$	(1-	$-\alpha)=0$	0.16			EWM	MA[4]] $=$	EWN	MA[3] α^{24}	+ (1-			0. 10		
			EWM	MA[5]		EWM	MA[4]	$x^{25}+$	(1-	$-\alpha)=0$	0.11			EWM	MA [6]] $=$	EWN	MA[5] α^{2} ¢	+ (1-	-)		0.09		
			WWM	MA[7].		EWM	MA [6]a	$x^{27}+$	(1-	$-\alpha)=0$	0.07			EWM	MA [8]] $=$	EWN	MA[7] $\alpha^{z_{8}}$	+ (1-	- $)$		0. 05		
							,																	

c)* Determine Δt to be able to estimate 1% of link quality, in packet rate of one packet per second.

d) Calculate and update $W M-E W M A$ link quality estimation after every reception for given $\alpha=0.97$, initial estimation $W M-E W M A[0]=1.0$, and for the previosly calculated Δt.
 second and the sequence numbers of the received packets.

Problem 4 ETX and EOTX metric (9 credits)

We consider the network depicted in Figure 4.1 that consists of four nodes $N=\{1,2,3,4\}$ ordered according to their EOTX distance $d_{i j} \forall i, j \in N$ from left to right in ascending order. The erasure probabilities between nodes are considered independentely and identically desitrbuted with expectation $0<\epsilon_{i j}<1 \forall i, j \in N$.
(1)
(2)
(3)
(4)

Figure 4.1: Four-node network. We consider all possible hyperarcs being present.
The EOTX distance $d_{i j}$ between nodes $i, j \in N$ is known from the lecture to be

$$
\begin{equation*}
d_{i j}=\underbrace{\frac{1}{1-\prod_{k<i} \epsilon_{i k}}}_{a)}+\underbrace{\sum_{k<i} d_{k j}\left(1-\epsilon_{i k}\right) \prod_{1<k} \epsilon_{i l}}_{b)} . \tag{1}
\end{equation*}
$$

a)* Explain in your own words the meaning the of the first summand in (1).

Number of transmissions made by i to ensure that at least one node closer to j than i itself receives it.
b)* Explain in your own words the meaning the of the second summand in (1).

Number of transmissions made by a downstream node k privded that

- k overheard the transmission by k and
- no node closer to j than k also received that transmission.
c) ${ }^{*}$ Derive d_{12}.

		-						-	-																		
													d		1												
															$-\epsilon_{12}$												

e) Derive d_{14}.

$$
\begin{aligned}
& d_{14}=\frac{1}{1-\epsilon_{12} \epsilon_{13} \epsilon_{14}}+d_{24}\left(1-\epsilon_{12}\right) \epsilon_{13} \epsilon_{14}+d_{34}\left(1-\epsilon_{13}\right) \epsilon_{14} \\
& d_{24}=\frac{1}{1-\epsilon_{23} \epsilon_{24}}+d_{34}\left(1-\epsilon_{23}\right) \epsilon_{24} \\
& d_{34}=\frac{1}{1-\epsilon_{34}}
\end{aligned}
$$

Problem 5 Quiz (5 credits)

Each of the following subproblems can be solved independently of each other.
a)* Explain the difference between network coding and forward error correction.

With FEC coding / decoding is done at source / destination (or hop-to-hop). With network coding, intermediate nodes recode without necessarily decoding.
b)* Give an example of bidirectional network coding.

A wireless network with with at least one relay node between source and destination that combined packets from both flows (directions).
c)* In multicast networks, state the reasons for maximum flow increase through store-forward, tree-based forwarding and network coding approaches both formally (in terms of constraints) and practically (in terms of actions in the nodes).

```
store-forward vs tree-based forwarding
formal: by relaxing flow conservation constraint.
practical: by allowing intermediate nodes duplicate packets.
tree-based forwarding vs network coding
formal: by relaxing joint capacity constraint.
practical: by allowing intermediate nodes encode packets.
```

d)* How are control frames prioritized over data frames when using the distributed coordination function (DCF) in IEEE 802.11?

Control frames are sent after SIFS, which is shorter than DIFS.

Table 5.1: Additional pre-print for Problem 1

