Network Coding

IN2315, WiSe 2023/23

Tutorial 2

November 21, 2023

Problem 1 Finite extension fields

Given the finite field \mathbb{F}_{p}, we consider the finite extension field

$$
\begin{equation*}
F_{q}[x]=\left\{\sum_{i=0}^{n-1} a_{i} x^{i} \mid a_{i} \in \mathbb{F}_{p}\right\} \tag{1}
\end{equation*}
$$

with $q=p^{n}$ elements. Specifically, let $p=3$ and $n=2$.
a)* Find a generator (primitive element) of \mathbb{F}_{3}.
b) Determine the inverse elements of the multiplicative group of \mathbb{F}_{3}, i. e., given $a \in \mathbb{F}_{3} \backslash\{0\}$ determine $b \in \mathbb{F}_{3} \backslash\{0\}$ such that $a \cdot b=1$ (and thus $a=1 / b$).
c) Determine the inverse elements of the additive group of \mathbb{F}_{3}, i. e., given $a \in \mathbb{F}_{3}$ determine $b \in \mathbb{F}_{3}$ such that $a+b=0$ (and thus $a=-b$).
d)* Enumerate all $a \in F_{q}[x]$.
e)* Determine all reduction polynomials such that $F_{q}[x]$ forms a finite extension field.
f) Take two reduction polynomials $r_{1} \neq r_{2}$ and show that $(a \cdot b) \bmod r_{1} \neq(a \cdot b) \bmod r_{2}$ for $a, b \in F_{q}[x]$ in general.

From now on we assume $r(x)=x^{2}+1$.
g)* State the addition and multiplication tables for $F_{q}[x]$ subject to $r(x)=x^{2}+1$.
h) For all $a \in F_{q}[x]$, determine the addtive inverse element, i. e., $b \in F_{q}[x]: a+b=0$. Note that we can write $b=-a$.
i) Determine a generator g for $F_{q}[x]$.
j) State the \log and antilog tables for $F_{q}[x]$ subject to $r(x)=x^{2}+1$ and $g(x)$.
k) Compute the following multiplications via the log table approach and validate the result with the multiplication table

$$
\begin{array}{r}
(2 x+2)(x+1)= \\
(x+1)(2 x)=
\end{array}
$$

Problem 2 Implementation (homework)

For this problem, use the finite extension field from the previous problem, i. e. $p=3, n=2, r(x)=x^{2}+1$, and the generator $g(x)$ you have previously determined.
a) Implement both the log table algorithm and the full table approach (creating a two-dimensional array with all possible multiplication results) in a programming language of your choice.
b) Benchmark your algorithms, i.e., determine the average execution time per multiplication, and explain the results.

