

Network Coding IN2315, WiSe 2023/23

Tutorial 2

November 21, 2023

Problem 1 Finite extension fields

Given the finite field $\mathbb{F}_{\rho},$ we consider the finite extension field

$$F_q[x] = \left\{ \sum_{i=0}^{n-1} a_i x^i \mid a_i \in \mathbb{F}_p \right\}$$
(1)

with $q = p^n$ elements. Specifically, let p = 3 and n = 2.

a)* Find a generator (primitive element) of \mathbb{F}_3 .

b) Determine the inverse elements of the multiplicative group of \mathbb{F}_3 , i. e., given $a \in \mathbb{F}_3 \setminus \{0\}$ determine $b \in \mathbb{F}_3 \setminus \{0\}$ such that $a \cdot b = 1$ (and thus a = 1/b).

c) Determine the inverse elements of the additive group of \mathbb{F}_3 , i. e., given $a \in \mathbb{F}_3$ determine $b \in \mathbb{F}_3$ such that a + b = 0 (and thus a = -b).

d)^{*} Enumerate all $a \in F_q[x]$.

e)* Determine all reduction polynomials such that $F_q[x]$ forms a finite extension field.

f) Take two reduction polynomials $r_1 \neq r_2$ and show that $(a \cdot b) \mod r_1 \neq (a \cdot b) \mod r_2$ for $a, b \in F_q[x]$ in general.

From now on we assume $r(x) = x^2 + 1$.

g)^{*} State the addition and multiplication tables for $F_q[x]$ subject to $r(x) = x^2 + 1$.

h) For all $a \in F_q[x]$, determine the addtive inverse element, i. e., $b \in F_q[x]$: a + b = 0. Note that we can write b = -a.

i) Determine a generator g for $F_q[x]$.

j) State the log and antilog tables for $F_q[x]$ subject to $r(x) = x^2 + 1$ and g(x).

k) Compute the following multiplications via the log table approach and validate the result with the multiplication table

$$(2x + 2)(x + 1) =$$

 $(x + 1)(2x) =$

Problem 2 Implementation (homework)

For this problem, use the finite extension field from the previous problem, i. e. p = 3, n = 2, $r(x) = x^2 + 1$, and the generator g(x) you have previously determined.

a) Implement both the log table algorithm and the full table approach (creating a two-dimensional array with all possible multiplication results) in a programming language of your choice.

b) Benchmark your algorithms, i.e., determine the average execution time per multiplication, and explain the results.