Chair of Network Architectures and Services School of Computation, Information and Technology Technical University of Munich

EexamPlace student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Network Coding

Exam: IN2315 / Endterm **Date:** Friday 1st March, 2024

Examiner: Prof. Dr.-lng. Stephan Günther **Time:** 08:00 – 09:15

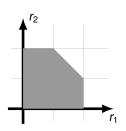
Working instructions

- This exam consists of 12 pages with a total of 4 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one page A4 cheatsheet
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at	Left room from	to	/	Early submission at
---	----------------	----	---	---------------------

Problem 1 Multiple choice and short questions (10 credits)

Mark correct answers with a cross


The following subproblems are multiple chouce/multiple answer, i. e., at least one answer per subproblem is correct. Subproblems are graded with 1 credit per correct answer and -1 credit per wrong answer. Missing crosses have no influence. The minimal amount of credits per subproblem is 0 credits.

To undo a cross, completely fill out the answer option To re-mark an option, use a human-readable marking For Subproblems a) – d) consider the network below, which consists of a wired network with two computers connected to an AP that serves two wireless clients according to IEEE 802.11. a)* How many broadcast domains does the network contain? **1** 4 \square 3 □ 6 \square 1 b)* How many collision domains does the network contain? **n** 2 **1** 3 c)* Which of the following statements are true? Computers attached via Ethernet address wire-■ Wireless computers address computers atless computers directly. tached via Ethernet directly. ■ Wireless computers can differentiate between Wireless computers commonly bypass the AP other wireless clients and computers attached when communicating with each other. via Ethernet. Computers attached via Ethernet are aware of Computers attached via Ethernet explicitly adthe AP. dress the AP. d)* Assuming random linear network coding with a generation size of $N \ge 4$, the chance that N + 1 packets suffice for decoding ... ☐ is near 100 % for GF(16) and GF(256). increases exponentially with the number of additional coded packets. primarly depends on the generation size. increases linearly with the number of additional primarly depends on the field size. coded packets.

f)* In which way does FEC differ from Network Coding?

g)* Given a coded packet network with two flows whose data rates are denoted by r_1, r_2 . Its feasable set of solutions is shown in the figure below. Mark the set of solutions maximizing the sum rate.

e)* Briefly explain the difference between the ETX and EoTX metric.

X

Problem 2 Finite extension fields (16 credits)

We consider a Galois field \mathbb{F}_p . First, answer the following simple questions regarding this finite field.

a)*	a)* Given $a,b\in\mathbb{F}_p$, state the rule for the + operation.														H																		
																																	Ш
b)*	Giv	⁄en	а,	b ∈	\mathbb{F}_3	, sta	ate '	the	rul	e fo	or th	ıe ·	op	erat	ion																		Ш
															_																		
c)*	Wh	ich	CO	ndı	tion	mı	ust	holo	of to	r p	suc	ch th	nat	F'p	tori	ms	a (ialo	DIS 1	ield													
We	no	w c	on	side	er th	ne (Galo	ois i	field	d fo	rme	ed b	ov t	2 =	2. l	Jsii	na t	this	fie	d. w	/e d	can	cre	eate	e so	o ca	alle	d fi	nite	e ex	ten	sion	1
	ds I				. t.		.						·		`		.9			<u>.</u> ,							0	-				0.0	
d)*	Brie	efly	ex	pla	in iı	n yo	our	owr	ı w	ord	s w	hat	a i	finit	e e	xte	nsic	on f	iela	is.													H
e) (Stat	e tl	he	elei	mer	nts	of F	[x	1																								
								0[/.	ı. 																								
																																	H
f) A	rgu	e v	vhe	the	er <i>F</i> {	₃ [x]	car	ı be	in e	ple	eme	nte	d ir	n ar	n ef	ficie	ent	wa	y or	ı toc	day	's c	om	pu	ters	S .							Ш
																																	Ш

Which general condition(s) must hold for such a reduction polynomial? Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.	Whi	ch ge	ener																					
	Whi	ch ge	ener																					
	Whi	ch ge	ener																					
	Whi	ch ge	ener																					
	Whi	ch ge	ener																					
Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.				al c	ond	litior	n(s)	mı	ust	hol	d fo	r sı	uch	a r	edu	uctio	on p	ooly	'no	mia	l?			
Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.																								
Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.																								
Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.																								
Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.																								
Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.																								
Given $a = x^2 + x + 1$ and $b = x^2 + 1$, provide the result of $a \cdot b$ over $F_8[x]$.																								
	Give	n <i>a</i> =	: X ² +	+ X +	- 1 a	and	b =	= X ²	+ 1	1, p	rovi	de	the	res	sult	of a	a · k	OV	er	F ₈ [>	‹].			
	+																		_					
	+-							_											-					\vdash
																						 _		

Problem 3 IEEE 802.11 medium access (19 credits)

This problem discusses the distributed coordination function (DCF), which is the basic medium access strategy of IEEE 802.11-based networks. The DCF is schematically depicted in Figure 3.1.

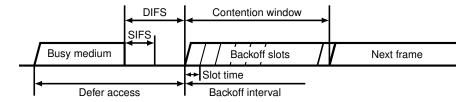
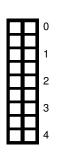


Figure 3.1: IEEE 802.11 medium access

Explain how the DCF works v	men a node is ready	to transmit a frame	C (addarning no pri	or name lossy.
How is frame loss detected in	case of unicasts and	d multicasts?		
Explain whether or not transm	nitting nodes are able	e to differentiate be	tween frame loss a	and collisions.

0 1 2 2	d)* Expla	ain who	ether o	or not th	ne DCF	₹ is fu	ally	func	etiona	al in	cas	se c	of no	des	оре	erati	ng i	in m	noni	tor I	mod	le.		
	We now the sake	of sim	plicity		sume t		of tv	wo n	odes	s op	era	ting	ı in n	non	itor	mod	le ir	n ra	nge	e of	eacl	h oth	ner.	For
	• no	furthe	r comi	municat	ion of	other	no	des	take	s pl	lace),												
	• no	randoi	m fran	ne losse	es occ	ur, ar	nd																	
				perfec ot starts		chro	nize	ed, i	. e., †	time	is:	slot	ted	and	bot	h no	ode	s ha	ave	a c	omn	non	viev	v of
	Let $X_i \in i \in \{1,2\}$, N _i }	denote	the ra	andor	n v	aria	ble d	lend	oting	g th	e nu	mb	er o	f co	ntei	ntio	n sl	ots	drav	wn b	y no	ode
0	e)* Dete	rmine	the ex	pectatio	on E[X	anc	l br	iefly	disc	uss	its	influ	uenc	e oı	n the	e ex	pec	ted	ma	xim	um	thro	ughį	out
1 2																								
0	f)* Derive	e the p	robab	ility of a	collis	ion in	ca	se c	of N ₁	= \	<i>l</i> ₂ =	N.												
1																								


g)* Derive the probability of a collision in case of $N_1 < N_2$.

1 2

h)* Derive the probability that node 2 successfully transmits a frame in that case.

Problem 4 Network coding in lossy wireless packet networks (15 credits)

We consider the network depicted by the hypergraph $G = (N, \mathcal{H})$ in Figure 4.1. **Note that only maximum hyperarcs are drawn**, which imply all smaller ones.

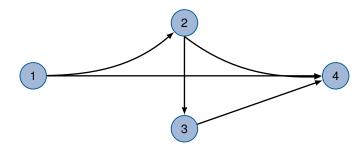
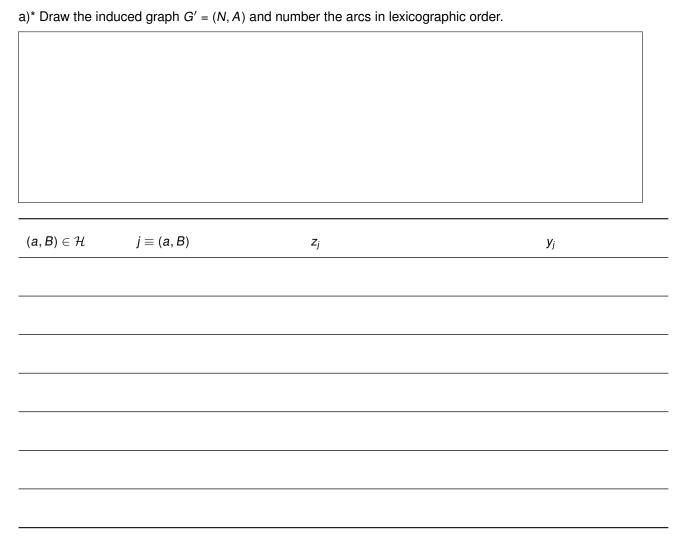
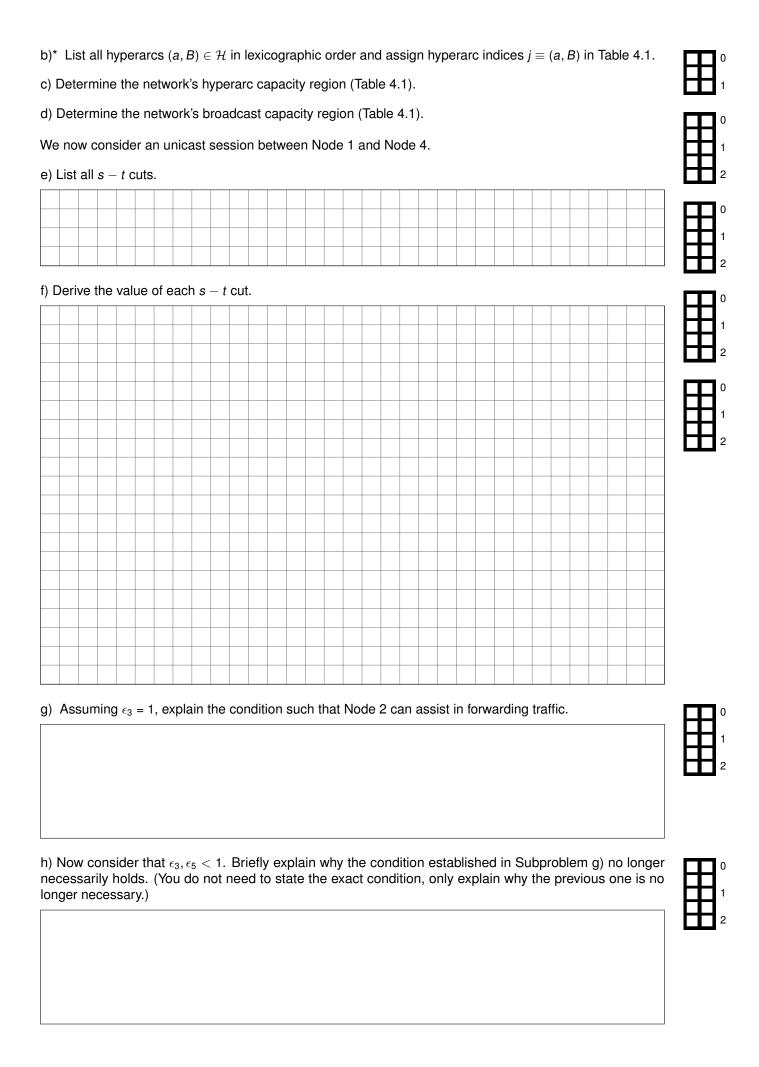
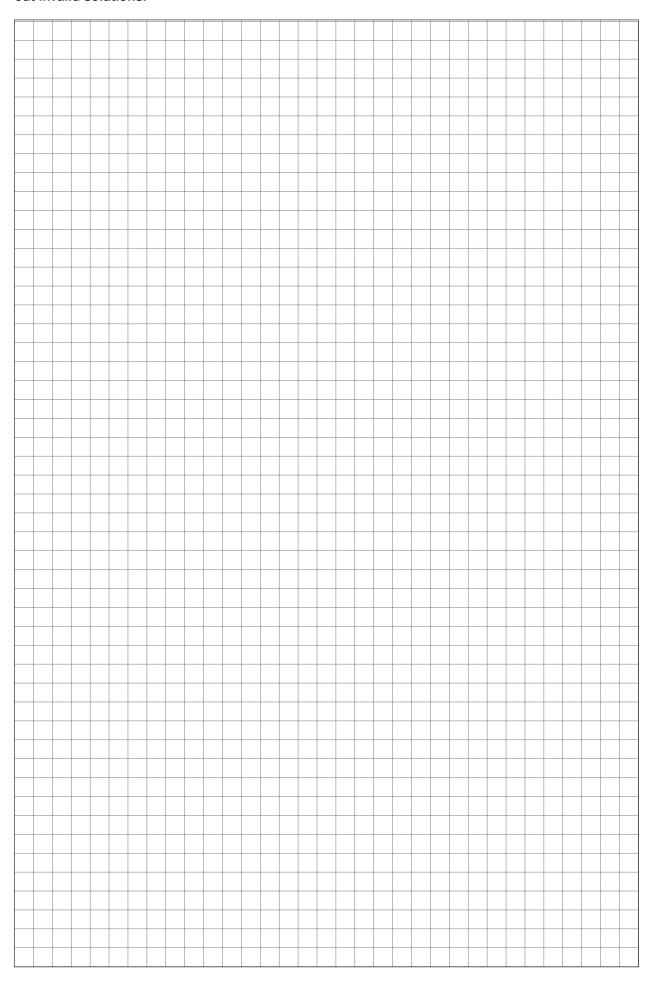
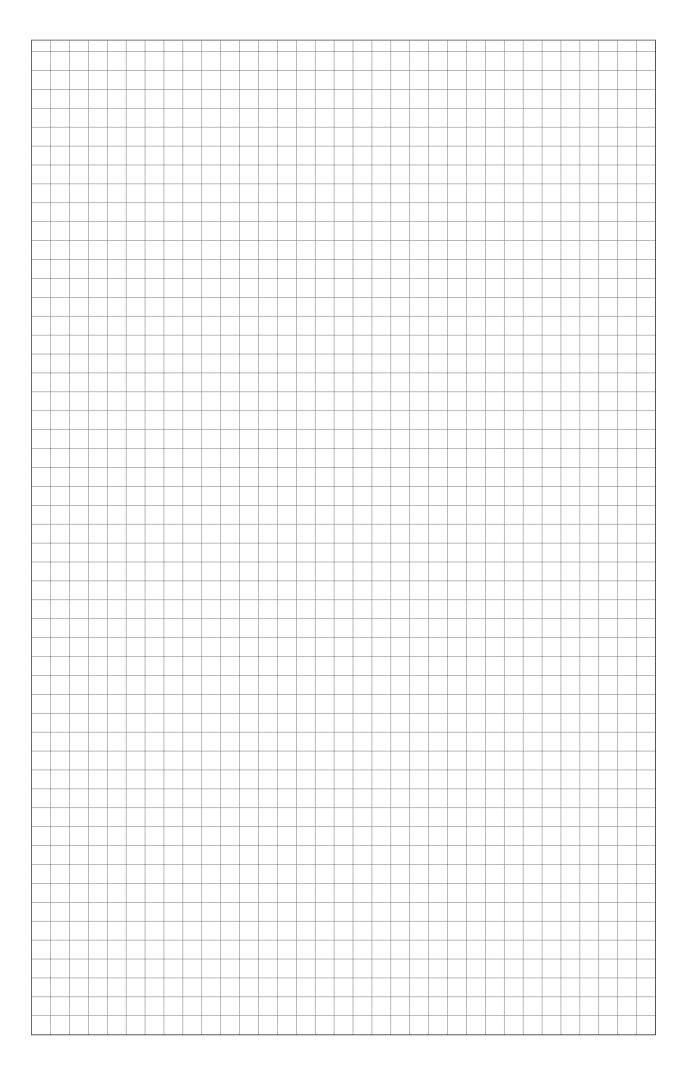
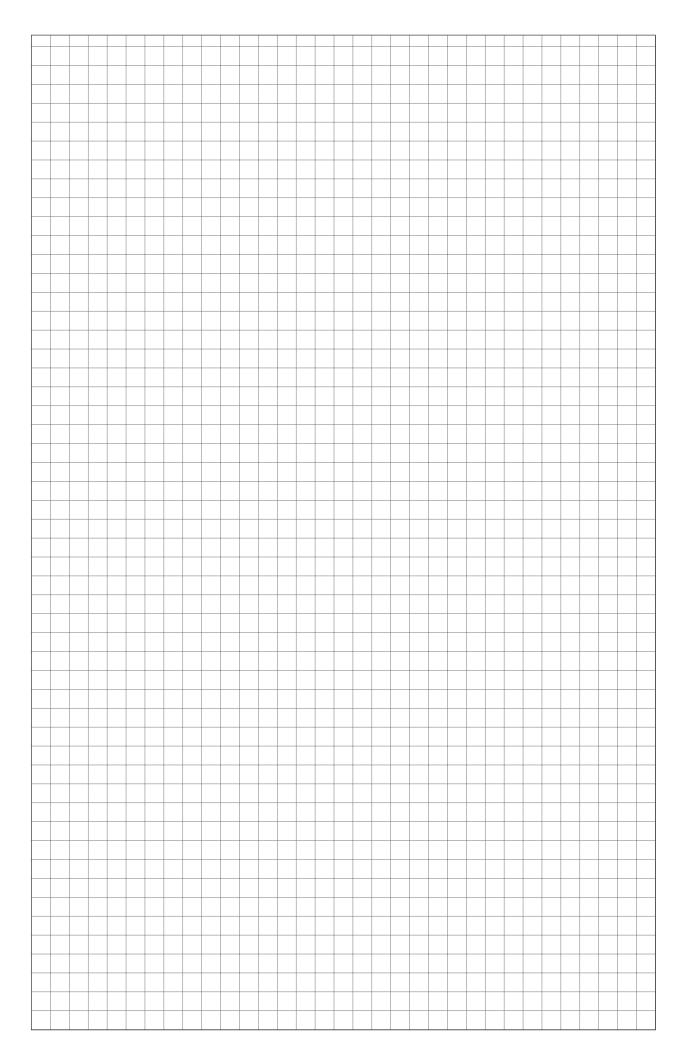


Figure 4.1: Hypergraph of example network, only maximum hyperarcs are drawn

We assume that packet losses, i. e., erasure events, are independently and identically distributed. Resource shares are denoted by $0 \le \tau_i \le 1$ for all $i \in N$. We further assume othorgonal medium access, i. e., nodes do not transmit concurrently.


Table 4.1: Solution table for Problems b) to d)

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

