
Rate-adaptive Link Quality Estimation for
Coded Packet Networks

Maurice Leclaire∗, Stephan M. Günther∗, Marten Lienen∗, Maximilian Riemensberger†, Georg Carle∗
∗Chair of Network Architectures and Services, Department of Informatics

†Methoden der Signalverarbeitung, Department of Electrical and Computer Engineering
Technical University of Munich, Germany

Email: {maurice.leclaire, guenther, marten.lienen, carle, riemensberger}@tum.de

Abstract—Coded packet networks allow for proactive injection
of redundant packets to compensate for packet loss. Link metrics
are usually based on the estimated transmission counter (ETX).
This metric is used to determine the expected number of coded
packets needed, but does not make guarantees for a specific
decoding probability. In this paper we show that relying on the
ETX metric leads to a surprisingly high probability that decoding
is not possible. Based on this result, we derive a redundancy
scheme to allow for an adjustable decoding probability. In a third
step, we extend this scheme to also consider the reliability of link
quality estimates themselves. We provide a numerically stable and
hardware-accelerated implementation of our redundancy scheme
[1], and compare all approaches in a simulated environment.
Finally, we show the effect of the new redundancy scheme
on different transport layer protocols in a wireless setup with
random linear network coding.

Index Terms—wireless, link quality, network coding

I. INTRODUCTION AND RELATED WORK

In packet networks, both erasure coding [2, 3] and network
coding [4] allow to compensate for packet loss by proactively
injecting redundant coded packets. Under these conditions,
erasure coding can be considered a special case of network
coding, i. e., coding is done on a point-to-point basis, which
can be both an end-to-end connection over multiple hops
or decoding and recoding over single hops. Network coding
additionally allows intermediate nodes to form coded packets
without the need for decoding, or even to code on packets
belonging to different flows. Coding is therefore not only
performed at a source node but by all nodes, which is why
one can say the network is coding.

Both erasure and network coding require to determine the
correct amount of redundancy to allow the destination to
decode while avoiding an excessive amount of superfluous
transmissions. This turns out to be a difficult task in practice.
Considering a simple two-node wireless network, any kind of
network coding can be considered as a packet-level erasure
code. Assuming random linear coding, i. e., coded packets
are random linear combinations of source packets, estimating
the necessary number of coded packets consists of two steps:
estimate the (asymmetric) link quality and derive the necessary
amount of redundancy. Each packet that is overheard results
in a noisy reading of the link quality. This can be the number
of lost packets since the last one received or the signal-to-
noise ratio (SNR) during reception. A common method to
estimate the actual link quality while accounting for the fading

information content of past transmissions is an exponentially
weighted moving average (EWMA) based on the total amount
of overheard and missed packets. Woo and Culler [5] introduce
the more elaborate EWMA with window mean (WMEWMA)
which computes the average success rate over fixed time
intervals and updates the actual estimator at the end of each
interval. This is essentially a low-pass filter for the ordinary
EWMA and makes the estimator independent from the packet
rate. Based on an estimate of the packet success rate, the ETX
metric [6] computes the expected number of transmissions
until success. If the sender stops transmitting immediately
after the transmission was successful, e. g. if it is notified
via acknowledgements, the ETX metric yields the average
number of transmissions necessary to transfer a single packet.
This approach is widely used in wireless routing protocols
such as Babel [7], B.A.T.M.A.N [8], and (optionally) OLSRv2
[9]. The ETX metric is also commonly used to compute the
required redundancy in coded packet networks, for instance
by MORE [10, 11], COPE [12], and CORE [13]. However,
transmitting the corresponding number of coded packets does
not guarantee any specific probability for successful decoding
at the destination.

The two parts — estimating the link quality and predicting
redundancy — are the basis for efficient coded packet networks.
However, the commonly used schemes to predict the redun-
dancy only rely on the actual estimate for the link quality but
do not take the reliability of that estimate itself into account,
i. e., only a single value (the actual estimate) is used to predict
the amount of redundant packets. Renner et al. [14] show in the
context of wireless sensor networks that this is insufficient and
propose the Holistic Packet Statistics (HoPS) metric, which
consists of four estimates (short-term and long-term averages,
deviation of the short-term vs. long-term average, and a trend
indicator), but it is left open how those values should be used.
Koksal and Balakrishnan [15] introduce another estimator that
takes the standard deviation of the link quality estimates into
account. Although both of these approaches incorporate the
stability of the link, they do not consider the quality of the
estimates.

In this paper we propose a time-variant link quality estimator
and a quality aware redundancy scheme that allow to consider
the reliability of the actual link estimates. We start in Section II
with the definition of our system model and derive the time-

variant estimator for the link quality. Based on this we introduce
three different redundancy schemes. Scheme 1 determines the
expected number of transmissions for a generation of N packets
to allow for decoding at the destination, which is equivalent to
the ETX metric over a single hop. We show that this approach
exhibits a surprisingly high probability that the destination is
unable to decode. Based on this result we derive Scheme 2 that
allows for an adjustable decoding probability, which can be
considered a confidence level. Therefore, we refer to Scheme 2
as confidence level-based redundancy scheme. Both schemes
are derived and discussed in Section III.

Our main contribution consists in Scheme 3 that is derived
in Section IV. In contrast to Scheme 1 and 2 it incorporates
the reliability of the actual link estimate itself, which is why
we refer to Scheme 3 as quality-aware redundancy scheme. We
further introduce a numerically stable and hardware-accelerated
implementation of Scheme 3 in Section V, which is provided for
download at [1]. In Section VI, we first compare the different
approaches in a simulated environment and afterwards show
the influences of Scheme 3 on transport layer protocols in a
real-world wireless testbed using random linear network coding
in Section VI. Section VII concludes the paper.

II. SYSTEM MODEL

We consider a coded packet erasure network G = (V,A)
consisting of two nodes V = {v, w} and two arcs A =
{(v, w), (w, v)} representing an asymmetric link of time-
variant reliability. Packet erasures are assumed to be inde-
pendently and identically distributed over short periods of time
but may vary in the long term. Without loss of generality we
assume that node v is the transmitter and node w the receiver.
Packets1 transmitted are considered to carry a unique sequence
number starting at zero. If packets are transmitted in order, i. e.,
no re-ordering occurs after generating the sequence number,
the receiver can thus determine the number of missed packets
between two successfully overheard packets.

Let Zk denote a geometrically distributed random variable
counting the number of unsuccessful transmissions by v after
the (k − 1)-th and before k-th packet are overheard by w.
The vector Zk = [Z1, . . . , Zk]

T represents all sequences
of events leading to k successfully overheard packets at w.
After receiving the k-th packet, w has a concrete observation
zk = [z1, . . . , zk]

T of Zk. From that it can derive the number
of successfully overheard packets pk = dimzk = k and missed
packets qk = 1Tzk.

Assuming random linear network coding, the transmitter
may code on a subset of packets, which we refer to as a
generation of N packets. Packet erasures may be compensated
by an arbitrary linear combination of those packets that is
linearly independent of the set of packets already received. If
coding is done over a sufficiently large Galois field, we can
neglect random linear dependencies between the first N packets
received per generation. For instance, in case of GF(256)

1As we are considering transmission from the view point of the link layer,
we are actually talking about frames, which is however an unusual term in
the scope of network coding.

there is a 99.61% probability that N randomly generated
coded packets are linearly independent [16, 17]. Otherwise,
the following discussions can easily be extended to account
for random linear dependencies if necessary. If the link quality
is known in advance, transmitters can inject redundant packets
proactively to compensate for losses. The link quality estimate,
i. e. the success rate ρ of the first k packet transmissions, as
given by

ρ = lim
k→∞

pk
pk + qk

(1)

converges to the expectation of the success probability. Equa-
tion 1 does not yet account for time-variant erasure probabilities.
For this purpose time-variant estimators such as the exponen-
tially weighted moving average (EWMA) or window mean
EWMA [5] estimators are commonly used.

We propose a modified version: Let tk denote the point in
time when the k-th packet is being received. Given a time
constant τ > 0, we define the time-variant functions pk and
qk as

pk(t) = (pk−1(tk) + 1) e−τ(t−tk), (2)

qk(t) = (qk−1(tk) + zk) e
−τ(t−tk), (3)

with initial values p0 = q0 = 0. These functions combine the
actual counts of overheard and missed packets with an expo-
nential decay and thus represent a time-variant packet count.
The time constant τ determines how fast both expressions tend
to zero when no packets are being received. Note that (2) and
(3) are equivalent to an exponentially weighted moving average
if packets arrive in constant time intervals2. Analogous to (1)
we use

ρk(t) =
pk(t)

pk(t) + qk(t)
(4)

as time-variant estimator for the link quality. If not noted
otherwise, we abbreviate (2), (3), and (4) by simply writing
p = bpk(t)c, q = bqk(t)c, and ρ = ρk(t), respectively. Note
that the floor function ensures that p and q are integer values,
which is necessary for the following discussion.

The estimator as described above allows the receiver w to
estimate the success probability on link (v, w) ∈ A. However,
the estimate is needed by v to determine the amount of
redundancy that should be injected. Therefore, we assume that
w includes the actual values of p and q in beacon traffic which
is broadcast periodically. This approach naturally extends to
multiple nodes, i. e. all w ∈ V that are in range of transmitter v
can estimate the link quality ρvw, which is communicated back
to v through regular beacon traffic. Note that we do not consider
multi-hop networks for the scope of this paper, i. e. we are
solely concerned with the link between two neighboring nodes.

Based on these assumptions we now derive different schemes
to determine the minimum number n ≥ N of linearly
independent packets to allow for decoding. To this end we
introduce the random variable X counting the number of

2For the convex weight we obtain α = eτ .

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.5

0.6

0.7

0.8

0.9

1.0

Link quality ρ

P
r
[X
≥
N
|n

]
fo

r
de

co
di

ng
N = 4

N = 16

N = 128

Figure 1. Decoding probability Pr
[
X ≥ N |n∗

1

]
depending on the link

quality ρ for generation sizes N ∈ {4, 16, 128}. Solid plots assume that
n is real number while dotted plots indicate decoding probabilities if n is
restricted to integral values. The vertical dashed (red) lines indicate the range
of values for ρ such that n∗

1 = d4/ρe = 6, i. e., six coded packets are sent
for a generation of size N = 4.

coded packets received for the current generation given that
n ≥ 0 coded packets have been transmitted. Then X follows
a binomial distribution with parameters n and ρ.

III. QUALITY-UNAWARE REDUNDANCY SCHEMES

We refer to schemes determining the necessary amount of
redundant coded packets without taking the quality of link
estimates into account as quality-unaware schemes. First, we
consider the de-facto standard scheme based on the expected
number of redundant packets and discuss its weaknesses.
Afterwards, we extend that scheme to allow for additional
control over redundancy using confidence levels.

A. Expectation-based (Scheme 1)

Given X counting the number of coded packets received for
a given generation as introduced in Section II, we have that
E [X] = nρk. Since we need N coded packets for decoding,
we require that at least that many are received in expectation:

E [X] = nρk ≥ N ⇔ n ≥ N

ρk
.

Given that no fractions of packets can be sent, n∗1 = dN/ρke
is a lower bound for the number of coded packets that have to
be transmitted. The widely [7–13] used ETX metric is based
on this approach.

However, the probability that n∗1 packets are sufficient for
decoding is surprisingly low as shown in Figure 1. The thick
solid plots indicate the exact values for n if fractions of packets
could be sent, i. e., if n was a real number. The data points
(dotted plots) indicate the actual decoding probabilities as n∗1
is limited to integral values only. For instance, consider a
generation size of N = 4. For link qualities 0.6 ≤ ρ < 0.8
marked by the two vertical dashed (red) lines in Figure 1,
n∗1 = 6 coded packets would be transmitted. However, if the
link quality becomes equal to or greater than 0.8, one less
coded packet is transmitted which in turn causes an abrupt
drop of the decoding probability.

0 16 32 48 64 80 96 112 128
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ρ
=

0
.9

ρ
=

0.
8

ρ
=
0.
6

Number of redundant coded packets n−N

P
r
[X
≥

N
|n

]
fo

r
de

co
di

ng

θ
(
n∗
1

)

θ = 0.9

Figure 2. Decoding probability Pr [X ≥ N |n] if n−N redundant packets
are transmitted for a generation size of N = 128 and link qualities of
ρ ∈ {0.6, 0.8, 0.9}. Decoding probabilities θ

(
n∗
1

)
for Scheme 1 are marked

by the solid thin (green) lines. The confidence level θ = 0.9 is indicated by
the solid thick (red) line and the corresponding number of redundant packets
n∗
2 −N according to Scheme 2 are highlighted by vertical dashed (red) lines.

These results suggest that transmitting n∗1 coded packets
is insufficient for decoding from a practical point of view:
even for high quality links with ρ > 0.9, decoding becomes
only possible after sending feedback and waiting for additional
coded packets for a significant fraction of generations. In case
of random linear coding, this induces delays of at least one
round trip time between source and destination. Moreover, small
changes of the link quality can have an unproportional large
influence on decoding probability. In addition, the decoding
probability tends to further reduce with larger generations.

B. Confidence level-based (Scheme 2)

Given a confidence level 0 < θ < 1, we are interested in
determining

n∗2 = minn ≥ N : Pr [X ≥ N |n] ≥ θ, (5)

i. e., determining the minimum number n∗2 of coded packets
necessary such that the decoding probability is at least θ. The
confidence level θ thus gives additional control over the amount
of redundancy being injected by allowing to inject more packets
than needed on average to reduce decoding delays due to
waiting for feedback from the receiver.

The dotted, dashed, and solid (black) plots in Figure 2
show the decoding probability depending on the number of
redundant coded packets for a generation size of N = 128
at link qualities of ρ ∈ {0.6, 0.8, 0.9}. Sending no redundant
packets at all is obviously not enough for imperfect links, and
decoding probability is close to zero. The thin solid (green) lines
indicate the number of redundant packets n∗1 −N that would
be injected using Scheme 1 as described in Section III-A and
the corresponding decoding probabilities θ (n∗1). For instance,
at ρ = 0.9 (dotted plot) a total of 15 redundant packets are
sent, which results in a decoding probability of θ ≈ 57%.
The solid horizontal (red) line in Figure 2 marks a decoding
probability of θ = 0.9. The vertical dashed (red) lines highlight
the corresponding number of redundant packets n∗2−N needed
to achieve θ = 0.9 for the three different link qualities. For
instance, at ρ = 0.9 (dotted plot) a total of 19 redundant

Table I. Comparing total number of coded packets as derived from
Schemes 1 and 2 (θ = 0.9). The additional overhead compared to Scheme 1
is calculated as ∆ = n∗

2/n
∗
1 − 1.

ρ N n∗
1

θ = 0.9 θ = 0.99

n∗
2 ∆ n∗

2 ∆

0.6

4 7 9 28.6 % 13 85.7 %

16 27 32 18.5 % 38 40.7 %

64 107 119 11.2 % 128 19.6 %

128 214 230 7.5 % 243 13.6 %

0.8

4 5 6 20.0 % 9 80.0 %

16 20 23 15.0 % 26 30.0 %

64 80 87 8.8 % 92 15.0 %

128 160 168 5.0 % 176 10.0 %

0.9

4 5 5 0.0 % 7 40.0 %

16 18 20 11.1 % 22 22.2 %

64 72 76 20.0 % 79 9.7 %

128 143 147 2.8 % 152 6.3 %

packets are necessary, which are only four packets more than
scheme 1 would have sent. Thus, scheme 2 transmits about
2.8% more coded packets than scheme 1, but increases the
decoding probability from 0.55 to 0.9. For larger generations
this overhead is tolerable and decreases further with both
larger generations and better link quality (see Table I). For
small generations the overhead is proportionally larger, e. g.
for N = 16 and ρ = 0.9 Scheme 1 transmits 18 and Scheme 2
20 coded packets, which translates into an overhead of 11%.

IV. QUALITY-AWARE REDUNDANCY SCHEME

As the link quality is unknown and time variant, we use ρk
as introduced in Section II as an estimate. However, neither
the expectation-based nor the confidence level-based schemes
are able to take the reliability of ρk into account. Consider
a period of low traffic, e. g. beacon traffic only. Since few
samples are available, ρk may be a poor estimate of the actual
link quality. When a node suddenly starts transmitting, it has
to rely on the actual ρk to derive the amount of redundant
packets. As more and more samples become available, ρk
eventually approaches the actual link quality. In case that the
initial estimate has been worse than the actual link quality, we
transmit more coded packets than necessary. This is unfortunate
but tolerable as ρk approaches the actual link quality. However,
in case the initial estimate has been better, we inject fewer
coded packets than necessary according to either scheme. As
a result, the receiver is unable to decode and has to wait
for timed retransmissions. Transport layer protocols such as
TCP are sensitive to such delays as they are unaware of the
attempts of lower layers to compensate for losses. Instead,
TCP may interpret the decoding delay as packet loss and
prematurely initiate congestion avoidance. This leads to the
following considerations regarding the redundancy factor:

1) Overestimation during periods of low traffic is not
harmful if the estimate adapts when links get loaded.

2) Underestimation in contrast leads to erratic decoding
delays and may interfere with transport layer protocols
once links get loaded.

This motivates to incorporate the reliability of the time-variant
estimator ρk into a third scheme, which we refer to as quality-
aware redundancy scheme.

A. Quality-aware (Scheme 3)

Let S ∈ [0, 1] denote a continuous random variable resem-
bling the success probability of individual packet transmissions
with unknown probability mass function (PMF) fS(s). Given
a concrete observation zk of Zk as introduced in Section II,
i. e., given the history of how many packets were lost between
two consecutive packets overheard, we can use Bayes’ theorem
and express the conditional for S by

fS|zk
(s) =

Pr [Zk = zk|S = s] fS(s)

Pr [Zk = zk]

=
Pr [Zk = zk|S = s] fS(s)∫ 1

0
Pr [Zk = zk|S = ξ] fS(ξ) dξ

. (6)

Given an observation zk, we can determine the number of
overheard and missed packets pk and qk, respectively, as
introduced in Section II. To point out their dependency on zk,
we write p(zk) = pk and q(zk) = qk. Now we can determine
the probability

Pr [Zk = zk |S = s] = sp(zk)(1− s)q(zk) (7)

for any s ∈ [0, 1] after making the first observation, i. e., after
receiving the first packet. Before that and in absence of any
side information there is no reason to assume anything else
than S being uniformly distributed on the closed interval [0, 1],
i. e., fS|z0

(s) = 1 for all s ∈ [0, 1]. After observing z1 = [z1]
T ,

we can thus determine

fS|z1
(s) =

Pr [Z1 = z1|S = s] fS|z0
(s)

Pr [Z1 = z1]

=
sp(z1)(1− s)q(z1)∫ 1

0
ξp(z1)(1− ξ)q(z1) dξ

=
sp(z1)(1− s)q(z1)

B(p(z1) + 1, q(z1) + 1)

= Beta(s, p(z1) + 1, q(z1) + 1), (8)

where Beta(s, p + 1, q + 1) denotes the PMF of the Beta
distribution and B(p + 1, q + 1) the Beta function. After
observing zk = [z1, ..., zk−1, zk]

T we can thus use fS|zk−1

as approximation for the unknown distribution fS and obtain

fS|zk
(s) =

Pr [Zk = zk|S = s] fS|zk−1
(s)

Pr [Zk = zk]

=
sp(zk)(1− s)q(zk)fS|zk−1

(s)∫ 1

0
ξp(zk)(1− ξ)q(zk)fS|zk−1

(ξ) dξ

=
sp(zk)(1− s)q(zk) sp(zk−1)(1−s)q(zk−1)

B(p(zk−1)+1,q(zk−1)+1)∫ 1

0
ξp(zk)(1− ξ)q(zk) ξp(zk−1)(1−ξ)q(zk−1)

B(p(zk−1)+1,q(zk−1)+1) dξ

=
sp(zk)+p(zk−1)(1− s)q(zk)+q(zk−1)∫ 1

0
ξp(z1)+p(zk−1)(1− ξ)q(zk)+q(zk−1) dξ

=
sp(zk)(1− s)q(zk)∫ 1

0
ξp(zk)(1− ξ)q(zk) dξ

= Beta(s, p(zk) + 1, q(zk) + 1). (9)

By using this estimate for the success probability’s PMF,
we consider an optimization problem similar to (5):

n∗3 = minn ≥ N : Pr [X ≥ N |n, zk] ≥ θ, with (10)

Pr [X ≥ N |n, zk] = 1− Pr [X < N |n, zk]

= 1−
N−1∑
i=0

Pr [X = i |n, zk] . (11)

The new optimal value as obtained by Scheme 3 is denoted by
n∗3. Given a specific realization zk of Zk and writing again
p = p(zk) and q = q(zk), we obtain

Pr [X = i |n, zk] =
∫ 1

0

(
n

i

)
si(1− s)n−ifS|zk

(s) ds

=

(
n

i

)∫ 1

0

si(1− s)n−i sp(1− s)q

B(p+ 1, q + 1)
ds

=

(
n

i

)
B(i+ p+ 1, n− i+ q + 1)

B(p+ 1, q + 1)
. (12)

Note that p, q are integral values as defined in (2) and (3). This
allows us to express the Beta function B(x, y) as fraction of
factorials, i. e.,

B(x, y) =
(x− 1)!(y − 1)!

(x+ y − 1)!
. (13)

Substituting (13) in (12) and reordering the products yields

Pr [X = i |n, zk] =
n!(p+ q + 1)!

(n+ p+ q + 1)!

(i+ p)!

i!p!

(n− i+ q)!

(n− i)!q!

=

n∏
j=1

j

p+ q + j + 1

i∏
j=1

j + p

j

n−i∏
j=1

j + q

j

=

i∏
j=1

p+ j

p+ q + j + 1︸ ︷︷ ︸
g

n∏
j=i+1

j(q + j − i)
(p+ q + j + 1)(j − i)︸ ︷︷ ︸

h

.

(14)

Note that factorials were not cancelled against each other at
will but in a very specific way to avoid overruns and numeric
instability:

1) Since the individual factors of g approach 1 for j →∞,
g remains bounded by (p/(p+ q + 1))i < g ≤ 1 at all
times.

2) Since the product g · h represents a probability, we find
that h is upper bounded by h < 1/g = ((p+ q+1)/p)i.

Since multiplication of two floating point values is not prone to
cancellations3 , the only ways for (14) to become numerically
unstable are if either g → 0 or h→∞. Both cases are result
of extremely poor links, i. e., q � p, which is of no practical

3Multiplication of two floats may still lead to subnormal numbers, which
may be mapped to numerically zero depending on implementation. We address
this issue in Section V.

100

101

102

103

100

101

102

103

0

0.3

0.6

0.9

1.2

ρ = 0.6

ρ = 0.8

ρ = 0.9

p

q

Su
rp

lu
s

fa
ct

or
σ

Figure 3. Surplus factor σ depending on p, q for θ = 0.9 and a generation
size of N = 128, e. g. σ = 0 means that the confidence level-based and
quality aware schemes give the same results. The solid, dashed, and dotted
plots indicate the surplus factor for a constant link quality ρ ∈ {0.9, 0.8, 0.6},
respectively, and thus show the differences between both schemes at constant
link qualities.

interest. Applying this result to (11) finally gives the desired
probability

Pr [X ≥ N |n, zk] = (15)

1−
N−1∑
i=0

i∏
j=1

p+ j

p+ q + j + 1

n∏
j=i+1

j(q + j − i)
(p+ q + j + 1)(j − i)

,

yielding a numerically stable blue-print for implementation.
Regarding computational complexity the outer sum is

bounded by the constant generation size N while the inner
products are bounded by the expected number of packets
n ≥ N that have to be sent. This results in a complexity
of O(Nn), which we show in Section V can be solved in less
than 50µs for most link qualities of practical interest.

B. Differences to the confidence level-based scheme

The unique feature of this new redundancy scheme compared
to the ones previously discussed is its ability to take the
reliability of the link quality estimate itself into account. If
the link is idle, e. g. periodic beacon traffic only, we have only
a rough estimate of the actual link quality, which is reflected
by small values for the observed packet count p+ q. Due to
that uncertainty more redundancy may be needed to ensure a
given confidence level θ. However, as the link gets loaded and
packet counters increase, the amount of redundancy should
converge to the same amount as determined by Scheme 2.

To assess the differences between n∗2 and n∗3 as determined
by Schemes 2 and 3, respectively, we consider surplus factor
σ = n∗3/n

∗
2 − 1 of additional redundancy depending on p, q,

and θ. The result for θ = 0.9 is shown in Figure 3. We see
that the surplus factor σ is large if few samples are available to
estimate the link quality. More samples mean that more packets
must have been received in the past, i. e., p becomes larger, the
estimate for the link quality becomes more reliable, and the
surplus factor σ approaches zero. For instance, for p ≥ 1000
and q <= p we have σ < 0.75%. In case of q � p, the

Listing 1. Basic implementation without hardware acceleration. Some casts
to double precision floats are omitted for brevity.

int update_ralqe(int p, int q, float t, int N) {
double s[] = {[0 ... N-1] = 1}, sum , g, h;
int i, n = 1;
do {

sum = 0.0;
g = (p+n) / (p+q+n+1);
for (i=0; i<N; i++) {

h = n*(q+n-i) / ((p+q+n+1)*(n-i));
if (n<=i)

s[i] *= g;
else

s[i] *= h;
sum += s[i];

}
n++;

} while ((1.0- sum) < t);
return n;

}

surplus factor σ remains considerable large, which is desired:
if p is small, few packets have been received, which does not
preclude large values for q in case of bad links. The solid,
dashed, and dotted lines in Figure 3 highlight the differences
between Schemes 2 and 3 for constant proportions but different
absolute values for p, q, i. e., the link quality ρ is constant for
each plot.

V. IMPLEMENTATION

Based on the results of Section IV-A, we implement
a hardware-accellerated and numerically stable kernel that
efficiently solves (15). Both the scalar and vectorized imple-
mentations are available for download at [1].

A. Scalar implementation

The scalar implementation is shown in Listing 1. It consists
of an array of N elements corresponding to the individual
summands of (15). Afterwards, each summand is multiplied
by the corresponding factor g or h, which correspond to a
single factor of the two products g and h of (14). The result is
accumulated in a register within the inner loop. The outer loop
increases n by one at a time and checks for the break condition
1− Pr [X < N |n] ≥ θ. Note that the inner loop just updates
each summand with one new factor at a time, which allows
to increment n without solving (15) over and over again. As
discussed in Section IV-A, the individual summands remain
bounded at all times. However, in case of bad link qualities
and small values for p, i. e., q � p, a summand may become
numerically zero when using single precision floats. Therefore,
the array containing the individual summands that are updated
in each iteration must be double precision.

B. Vectorized implementation

The scalar implementation of Listing 1 can be vectorized
and considerably accelerated by using SIMD extensions of
modern processors, which we show exemplary by using the
AVX4 [18] instruction set extension introduced with Intel’s

4Advanced Vector Extensions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

101

102

103

104

Link quality ρ

C
om

pu
ta

ti
on

ti
m

e
t

[µ
s]

p + q = 10

p + q = 100

p + q = 1000

Figure 4. Time to solve (15) depending on the link quality ρ and and different
total number of samples p + q ∈ {10, 100, 1000} for a generation of size
N = 256 and a confidence level of θ = 0.99. Ball markers (black plots)
indicate results of the scalar implementation, square marker results for the
vectorized implementation (AVX). The dashed line indicates t = 50µs. Both
tests were performed on an Intel Core i7-5600U5using a single thread only.

Sandy Bridge microarchitecture in 2011. The basic idea is to
vectorize the inner loop with a stride size of 8, i. e., single
precision floats. The conditional in the inner loop can be
replaced by a vector compare of n ≤ i. The result is a vector
indicating the comparison result for each individual component
of n. This is used in combination with a blend operation to
construct a vector containg either a product of g or h in each
of its components, i. e., h is computed opportunistacally. The
combination of opportunistic calculations and blend operations
is highly efficient as it removes branches. To avoid the
numerical problem mentioned in Section V-A, the resulting
vector is converted to double precision before the summands
are updated.

C. Computation time

The time needed to solve (15) for a generation of N = 128
and a confidence level of θ = 0.99 is shown in Figure 4.
The ball markers (black plots) show results for the scalar
implementation as printed in Listing 1, square markers (blue
plots) indicate results for the vectorized implementation using
AVX extensions. We see that the computation time depends
on both the link quality ρ as well as the total amount of
available samples p+ q. Both are consequences of the fact that
determining n̂∗ according to (15) requires to iterate until the
confidence level θ is reached. In case of a small number of
samples, proportionally more iterations are needed. The dashed
(red) line in Figure 4 indicates t = 50µs, i. e., for link qualities
better than ρ = 0.4 we are able to solve (15) in less than
50µs using the vectorized implementation, which accelerates
computation by approximately an order of magnitude. Since it
is not neccessary to solve n̂∗ for each packet being transmitted
but instead to updated the value only a couple of times per
second or even less, those times are affordable even on smaller
devices.

5Low voltage Broadwell-based notebook processor running at up to 3.2 GHz

VI. RESULTS

First, we validate and compare the different redundancy
schemes in a simulated environment. We demonstrate that
Scheme 3 converges to Scheme 2 if the link estimate is
based on sufficiently large number of samples. Afterwards,
we demonstrate the influence of Scheme 3 on transport layer
protocols in a wireless network with random linear network
coding.

A. Simulation

We simulate the time evolution of all schemes over a
timespan of 300 s using different packet rates and link qualities.
The results are shown in Figure 5. The upper part shows the
time evolution of pk(t) and qk(t). The main part of Figure 5
shows the results of the different redundancy schemes:

1) The dotted (black) plot indicates the redundancy deter-
mined by Scheme 1.

2) The dashed (orange) plot represents the result of
Scheme 2 for θ = 0.9.

3) The solid (blue) plot indicates redundancy factor n∗3/N
as determined by Scheme 3 for θ = 0.9.

4) The three shaded surface plots in the background in-
dicate the uncertainty as derived from Scheme 3, i. e.,
(n∗3 ±

√
Var [n∗3])/N , at three different confidence levels

θ ∈ {0.5, 0.9, 0.99}.
5) The different phases and the parameters (packet rate and

link quality) are highlighted by dashed (red) lines.
Since p and q are unbounded above, the link quality estimate
as introduced in Section II exhibits an unwanted dependency
on the packet rate: a phase of high link utilization results in
large values for both packet counters, which in turn take a
long time to decrease after the link becomes idle again. In
the meantime the link estimate may be considered reliable.
A simple solution to that issue is to enforce an upper bound
for pk + qk whenever packet counters are updated — scaling
both counter down when necessary. This approach is legitimate
since the surplus factor σ was shown in Section IV-B to be
smaller than 0.75% for p ≥ 1000 and q ≤ p. Consequently,
there is not much benefit from leaving pk and qk unbounded.
For the simulations in this section we limit p+ q ≤ 1000 and
choose τ = 0.1 as time constant. This results in a decay of p
and q by 63% over a time span of 10 s if no further packet is
being received. Decreasing τ leads to a faster decay and thus
more up to date estimates, but also increases the variance and
thus uncertainty during phases of low traffic.

Phase 1: Simulation starts at t = 0 with a packet rate of
5 packets/s at a link quality of θ = 0.9. It takes approximately
20 s for all schemes to reach a steady state at which packet
counters are approximately p ≈ 44 and q ≈ 4. This translates
into an estimated link quality of approximately 92%, which
is slightly off the actual quality of 90%. We clearly see that
both Schemes 2 and 3 overestimate the average redundancy
as given by Scheme 1. The difference between both schemes
stems from the fact that Scheme 3 is aware of the unreliable
estimate.

Phase 2: At t = 60 s the link quality suddenly drops to
ρ = 0.7 while the packet rate remains constant at 5 packets/s.
All schemes now show some oscillation due to unreliable
estimates ranging between 65% and 75%. Decreasing the
time constant τ would make the estimate more stable but also
require more time to react to changes of the link quality.

Phase 3: At t = 120 s the packet rate increases to
100 packet/s while the link quality remains constant at ρ = 0.7
We immediately see a significant increase of p and q, meaning
that the estimated link quality is now more reliable. All schemes
now show a significantly more stable result. Scheme 3 almost
instantly converges to the result of Scheme 2 as it should be
the case. In addition, we see that the uncertainty of Scheme 3
as indicated by the shaded surface plots in the background
significantly decreases.

Phase 4: At t = 180 s the link quality increases to ρ = 0.9
while the packet rate remains constant at 100 packet/s. We see
that p increases while q decreases proportionally. All schemes
adapt accordingly and now show an even more stable behavior.

Phase 5: At t = 240 s the packet rate drops to 5 packet/s
while the link quality remains constant at ρ = 0.9. We see that
all schemes start to oscillate again as the estimate for the link
quality becomes more and more unreliable with decreasing
p and q. We also see that Scheme 3 starts to diverge from
Scheme 2 and falls back to overestimation of redundancy during
phases of low traffic.

The behavior of Scheme 3 is desirable in all phases:
1) During phases of low traffic we can afford some addi-

tional redundancy as few packets are sent anyway.
2) As soon as the link gets loaded, the amount of redundancy

converges to the minimum amount needed to achieve the
predetermined confidence level.

3) When the link becomes idle again, the amount of
additional redundancy slowly increases over time as the
estimate of the link quality becomes more and more
unreliable.

Note that convergence does not depend on θ, i. e., for θ = 0.99
and 120 < t ≤ 240 Scheme 2 would be within the upper
shaded plot indicating the uncertainty of Scheme 3. It is also
interesting to see that for θ = 0.5 Scheme 3 (lower shaded
plot) yields results almost identical to Scheme 1.

B. Real-world performance

To demonstrate the potential of quality-aware redundancy
in practice, we validate the scheme using our Network Coding
Module (NCM)6. We us a two-node wireless setup as described
in Section II. Random linear coding is done on generations
of N = 128. Only one generation is being used at any time,
i. e., the generation window size is set to one and transmission
of the next generation cannot start before decoding of the
current generation was signaled from the destination back to
the source. The link quality was closely monitored during
test and was approximately ρ12 = 0.96 and ρ21 = 0.94. The

6The underlying injection library libmoep is available for download at [1].
The NCM will soon be released under GPLv2

100

101

102

103
pk(t) qk(t)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

5 pps, ρ = 0.9

Phase 1 Phase 2

5 pps, ρ = 0.7

Phase 3

100 pps, ρ = 0.7

Phase 4

100 pps, ρ = 0.9

Phase 5

5 pps, ρ = 0.9

Time t [s]

R
ed

un
da

nc
y

fa
ct

or
n
/N

100

101

102

103
pk(t) qk(t)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

5 pps, ρ = 0.9

Phase 1 Phase 2

5 pps, ρ = 0.7

Phase 3

100 pps, ρ = 0.7

Phase 4

100 pps, ρ = 0.9

Phase 5

5 pps, ρ = 0.9

Time t [s]

R
ed

un
da

nc
y

fa
ct

or
n
/N

Scheme 3
Scheme 2
Scheme 1

θ = 0.99
θ = 0.90
θ = 0.50

Figure 5. For all simulations we used a generation size of N = 128 and a time constant of τ = 0.1 for packet counters. The upper part shows the evolution
of p and q for the respective simulation phase. The lower part shows the evolution of the different redundancy schemes: The solid surface plots show a moving
average of n∗

3 ±
√

Var
[
n∗
3

]
for θ ∈ {0.5, 0.9, 0.99} derived from the quality-aware redundancy scheme, i. e., wider surface plots indicate more uncertainty

with respect to the reliability of n∗
3 . The solid, dashed, and dotted plots indicates the time evolution of n∗

3 , n∗
2 , and n∗

1 , respectively. All plots are normalized
to the generation size N . The magnification to the right illustrates the different plots.

0 30 60 90 120 150 180 210 240 270 300
25

30

35

40

45

50

Time t [s]

T
hr

ou
gh

pu
t

[M
b
it
/
s]

UDP TCP SCTP

Figure 6. Throughput for a generation of N = 128 packets. Solid and dotted
plots show the results for Scheme 3 and 1, respectively.

tests were performed using two Qualcomm Atheros AR9580
devices in monitor mode7. The MTU was set to 3200B. The
test flows consist of unidirectional data streams sent from
node 1 to 2 using TCP, UDP, and SCTP as transport layer
protocols. Throughput is measured using netperfmeter [19].
The underlying NCM thereby assures that a lossless link is
presented to the transport layer protocols.

The results are shown in Figure 6. In case of UDP, which
is due to the lack of feedback the only unidirectional protocol
from the transport layer’s point of view, does not benefit in
terms of average throughput, but shows significantly lower
oscillations when Scheme 3 is used. In contrast, short-term
oscillations are not reduced in case of TCP but average
throughput is increased significantly. Interestingly, SCTP shows
virtually identical results in terms of throughput (goodput) no
matter which redundancy scheme is being used. At this time
we did not further investigate this anomaly but a possible

75700 MHz, 40 MHz channel width, 800 ns GI, MCS 12, 3200 B MTU

explanation is SCTP’s built-in semi-reliability, i. e., SCTP
schedules retransmissions on its own and gives up after a
certain amount of fails.

VII. CONCLUSION AND FUTURE WORK

Motivated by the prospect that proactive injection of redun-
dancy based on the usual expectation-based scheme causes
avoidable decoding delays in practice, we show that this
approach allows for decoding with probability of less than 60%.
At this point, decoding is delayed until additional redundant
packets arrive. Such “retransmits” usually rely on timeouts
or feedback from the destination. The resulting delays are
avoidable, and may in practice interfere with transport layer
protocols, e. g. TCP’s congestion avoidance. This leads to
suboptimal link utilization.

Based on this insight, we derive a quality-aware redundancy
scheme that takes two important factors into account:

1) determine the necessary redundancy factor to allow for
decoding given a certain confidence level, and

2) consider the reliability of the actual link estimate itself.
The new approach is motivated, implemented numerically stable
and with support for hardware acceleration, simulated and
compared to expectation and confidence level-based schemes,
and evaluated in real-world wireless network using random
linear network coding. The results show that coded packet
networks benefit from our more flexible redundancy scheme.
Average TCP throughput is increased by about 20% while
deviation of throughput significantly decreases for UDP flows.

The quality-aware redundancy scheme as introduced in this
paper only considers a single link and is therefore limited to
network coding scenarios that degenerate to erasure coding.
It is left open at this point how the quality-aware redundancy
scheme can be extended to multi-hop mesh networks with need
for opportunistic- and multipath-aware metrics.

REFERENCES
[1] M. Leclaire, S. Günther, and M. Lienen, “Supplemental material: ralqe,”

http://moep80211.net/plink/lcn2016/.
[2] C. Huitema, The Case for Packet Level FEC. Boston, MA: Springer

US, 1997, pp. 109–120.
[3] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communica-

tion Protocols,” ACM SIGCOMM Computation Communication Review,
vol. 27, no. 2, pp. 24–36, Apr. 1997.

[4] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, Jul. 2000.

[5] A. Woo and D. Culler, “Evaluation of Efficient Link Reliability Estimators
for Low-power Wireless Networks,” Tech. Rep., September 2003.

[6] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-Throughput
Path Metric for Multi-hop Wireless Routing,” Wireless Networks, vol. 11,
no. 4, pp. 419–434, Jul. 2005.

[7] J. Chroboczek, “The Babel Routing Protocol,” RFC6126, 2011.
[8] D. Johnson, N. Ntlatlapa, and C. Aichele, “Simple Pragmatic Approach

to Mesh Routing using BATMAN,” 2nd IFIP International Symposium
on Wireless Communications and Information Technology in Developing
Countries, Oct. 2008.

[9] T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg, “The Optimized
Link State Routing Protocol Version 2,” RFC7181, 2014.

[10] S. Chachulski, “Trading Structure for Randomness in Wireless Oppor-
tunistic Routing,” M.Sc. Thesis, Massachusetts Institute of Technology,
2007.

[11] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading Structure
for Randomness in Wireless Opportunistic Routing,” ACM SIGCOMM,
pp. 169–180, 2007.

[12] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the Air: Practical Wireless Network Coding,” IEEE/ACM Trans.
Netw., vol. 16, no. 3, pp. 497–510, Jun. 2008.

[13] J. Krigslund, J. Hansen, M. Hundeboll, D. Lucani, and F. Fitzek, “CORE:
COPE with MORE in Wireless Meshed Networks,” Vehicular Technology
Conference (VTC Spring), 2013.

[14] C. Renner, S. Ernst, C. Weyer, and V. Turau, “Prediction accuracy of
link-quality estimators,” 8th European Conference on Wireless Sensor
Networks, pp. 1–16, Feb. 2011.

[15] C. E. Koksal and H. Balakrishnan, “Quality-Aware Routing Metrics
for Time-Varying Wireless Mesh Networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 11, pp. 1984–1994, Nov. 2006.

[16] C. Cooper, “On the Distribution of Rank of a Random Matrix over a
Finite Field,” Random Struct. Algorithms, vol. 17, no. 3-4, pp. 197–212,
Oct. 2000.

[17] O. Trullols-Cruces, J. Barcelo-Ordinas, and F. M., “Exact Decoding Prob-
ability Under Random Linear Network Coding,” IEEE Communications
Letters, vol. 15, no. 1, pp. 67–69, Nov. 2011.

[18] Intel 64 and IA-32 Architectures Optimization Reference Manual, Intel,
Jul. 2013.

[19] T. Dreibholz, Becke, H. M. Adhari, and E. Rathgeb, “Evaluation of a
new Multipath Congestion Control Scheme using the NetPerfMeter Tool-
Chain,” IEEE International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), Sep. 2011.

