

# Network Coding IN2315, WiSe 2024/24

#### **Tutorial 3**

#### November 21, 2024

### **Problem 1** Finite extension fields

Given the finite field  $\mathbb{F}_p$ , we consider the finite extension field

$$F_q[x] = \left\{ \sum_{i=0}^{n-1} a_i x^i \mid a_i \in \mathbb{F}_p \right\}$$
 (1)

with  $q = p^n$  elements. Specifically, let p = 3 and n = 2.

**a)**\* Find a generator (primitive element) of  $\mathbb{F}_3$ .

As we know that there is a primitive element and that  $0, 1 \in \mathbb{F}_3$  cannot be generators since those elements are idempotent, the generator must be 2, which is unique in this case.

- **b)** Determine the inverse elements of the multiplicative group of  $\mathbb{F}_3$ , i. e., given  $a \in \mathbb{F}_3 \setminus \{0\}$  determine  $b \in \mathbb{F}_3 \setminus \{0\}$  such that  $a \cdot b = 1$  (and thus a = 1/b).
  - 1 is the neutral element and therefore self-inverse
  - $(2 \cdot 2) \mod 3 = 1$ , i. e., 2 is also self-inverse
- **c)** Determine the inverse elements of the additive group of  $\mathbb{F}_3$ , i. e., given  $a \in \mathbb{F}_3$  determine  $b \in \mathbb{F}_3$  such that a + b = 0 (and thus a = -b).

$$(0+0) \mod 3 = 0$$
  $\Rightarrow -0 = 0$   
 $(1+2) \mod 3 = 0$   $\Rightarrow -1 = 2$   
 $(2+1) \mod 3 = 0$   $\Rightarrow -2 = 1$ 

**d)**\* Enumerate all  $a \in F_q[x]$ .

There are  $q = 3^2 = 9$  elements:

$$F_q[x] = \{ 0, 1, 2,$$
  
 $x, x+1, x+2,$   
 $2x, 2x+1, 2x+2 \}$ 

**e)**\* Determine all reduction polynomials such that  $F_q[x]$  forms a finite extension field.



The reduction polynomials must be of degree 2, i. e., candidates

$$a \in A = \{ x^2, x^2 + 1, x^2 + 2,$$
 $x^2 + x, x^2 + x + 1, x^2 + x + 2,$ 
 $x^2 + 2x, x^2 + 2x + 1, x^2 + 2x + 2,$ 
 $2x^2, 2x^2 + 1, 2x^2 + 2,$ 
 $2x^2 + x, 2x^2 + x + 1, 2x^2 + x + 2,$ 
 $2x^2 + 2x, 2x^2 + 2x + 1, 2x^2 + 2x + 2 \}$ 

In order to obtain the set B of reducible polynomials of degree 2, it is sufficient to consider all polynomials of degree 1 in  $F_a[x]$ :

Suitable reduction polynomials are therefore  $r \in A \setminus B$ , i. e.,

$$r \in \{x^2 + 1, x^2 + x + 2, x^2 + 2x + 2, 2x^2 + 2, 2x^2 + x + 1, 2x^2 + 2x + 1\}.$$

**f)** Take two reduction polynomials  $r_1 \neq r_2$  and show that  $(a \cdot b) \mod r_1 \neq (a \cdot b) \mod r_2$  for  $a, b \in F_q[x]$  in general.

We choose a = x + 2, b = 2x + 2,  $r_1 = x^2 + 1$ , and  $r_2 = 2x^2 + 2x + 1$ . Then we obtain

$$a \cdot b = 2x^2 + 1$$
,  
 $(2x^2 + 1) \mod(x^2 + 1) = 2$ , and  
 $(2x^2 + 1) \mod(2x^2 + 2x + 1) = x$ .

From now on we assume  $r(x) = x^2 + 1$ .

**g)\*** State the addition and multiplication tables for  $F_q[x]$  subject to  $r(x) = x^2 + 1$ .



| +      | 0            | 1            | 2            | X            | <i>x</i> + 1      | <i>x</i> + 2 | 2 <i>x</i>   | 2 <i>x</i> + 1 | 2x + 2       |
|--------|--------------|--------------|--------------|--------------|-------------------|--------------|--------------|----------------|--------------|
| 0      | 0            | 1            | 2            | X            | <i>x</i> + 1      | x + 2        | 2 <i>x</i>   | 2x + 1         | 2x + 2       |
| 1      | 1            | 2            | 0            | <i>x</i> + 1 | x + 2             | X            | 2x + 1       | 2x + 2         | <b>2</b> x   |
| 2      | 2            | 0            | 1            | x + 2        | X                 | <i>x</i> + 1 | 2x + 2       | 2 <i>x</i>     | 2x + 1       |
| X      | X            | <i>x</i> + 1 | x + 2        | 2 <i>x</i>   | 2x + 1            | 2x + 2       | 0            | 1              | 2            |
| x + 1  | <i>x</i> + 1 | x + 2        | X            | 2x + 1       | 2x + 2            | 2 <i>x</i>   | 1            | 2              | 0            |
| x + 2  | <i>x</i> + 2 | X            | <i>x</i> + 1 | 2x + 2       | <b>2</b> <i>x</i> | 2x + 1       | 2            | 0              | 1            |
|        | 2 <i>x</i>   |              |              |              |                   |              |              |                |              |
| 2x + 1 | 2x + 1       | 2x + 2       | <b>2</b> x   | 1            | 2                 | 0            | <i>x</i> + 1 | x + 2          | X            |
| 2x + 2 | 2x + 2       | 2 <i>x</i>   | 2x + 1       | 2            | 0                 | 1            | x + 2        | X              | <i>x</i> + 1 |

|            | 0 | 1                 | 2          | X            | <i>x</i> + 1 | x + 2        | <b>2</b> x   | 2x + 1       | 2x + 2       |
|------------|---|-------------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 0          | 0 | 0                 | 0          | 0            | 0            | 0            | 0            | 0            | 0            |
|            |   |                   |            |              |              | x + 2        |              |              |              |
| 2          | 0 | 2                 | 1          | 2 <i>x</i>   | 2x + 2       | 2x + 1       | X            | x + 2        | <i>x</i> + 1 |
| X          | 0 | X                 | <b>2</b> x | 2            | x + 2        | 2x + 2       | 1            | <i>x</i> + 1 | 2x + 1       |
|            |   |                   |            |              |              | 1            |              |              |              |
| x + 2      | 0 | x + 2             | 2x + 1     | 2x + 2       | 1            | X            | <i>x</i> + 1 | 2 <i>x</i>   | 2            |
| 2 <i>x</i> | 0 | <b>2</b> <i>x</i> | X          | 1            | 2x + 1       | <i>x</i> + 1 | 2            | 2x + 2       | x + 2        |
| 2x + 1     | 0 | 2x + 1            | x + 2      | <i>x</i> + 1 | 2            | 2 <i>x</i>   | 2x + 2       | X            | 1            |
| 2x + 2     | 0 | 2x + 2            | x + 1      | 2x + 1       | X            | 2            | x + 2        | 1            | <b>2</b> x   |

- **h)** For all  $a \in F_q[x]$ , determine the additive inverse element, i. e.,  $b \in F_q[x]$ : a + b = 0. Note that we can write b = -a.
- i) Determine a generator g for  $F_q[x]$ .

We have to check all elements  $a \in F_q[x]$  wether they are a generator. We try a = (x + 2) and prove that it can generate all elements of  $F_q[x]$ :

$$(x + 2)^{0} = 1$$

$$(x + 2)^{1} = x + 2$$

$$(x + 2)^{2} = x$$

$$(x + 2)^{3} = 2x + 2$$

$$(x + 2)^{4} = 2$$

$$(x + 2)^{5} = 2x + 1$$

$$(x + 2)^{6} = 2x$$

$$(x + 2)^{7} = x + 1$$

j) State the log and antilog tables for  $F_q[x]$  subject to  $r(x) = x^2 + 1$  and g(x).



With the solution of the previous subproblem we can simply fill the tables:

|   | Α            |              | L |
|---|--------------|--------------|---|
| 0 | 1            | 1            | 0 |
| 1 | x + 2        | 2            | 4 |
| 2 | X            | X            | 2 |
| 3 | 2x + 2       | <i>x</i> + 1 | 7 |
| 4 | 2            | <i>x</i> + 2 | 1 |
| 5 | 2x + 1       | 2 <i>x</i>   | 6 |
| 6 | 2 <i>x</i>   | 2x + 1       | 5 |
| 7 | <i>x</i> + 1 | 2x + 2       | 3 |

**k)** Compute the following multiplications via the log table approach and validate the result with the multiplication table

$$(2x + 2)(x + 1) =$$
  
 $(x + 1)(2x) =$ 

$$(2x + 2)(x + 1) = A(L(2x + 2) + L(x + 1)) = A(3 + 7) = A(2) = x$$
  
 $(x + 1)(2x) = A(L(x + 1) + L(2x)) = A(7 + 6) = A(5) = 2x + 1$ 

## Problem 2 Implementation (homework)

For this problem, use the finite extension field from the previous problem, i. e. p = 3, n = 2,  $r(x) = x^2 + 1$ , and the generator g(x) you have previously determined.

- **a)** Implement both the log table algorithm and the full table approach (creating a two-dimensional array with all possible multiplication results) in a programming language of your choice.
- **b)** Benchmark your algorithms, i. e., determine the average execution time per multiplication, and explain the results.